No.2ベストアンサー
- 回答日時:
u = x + √(x^2 + 1) …① で置換積分したんですね。
その置換は巧妙で、一般に 2変数文数式 f(x,y) による
S = ∫ f(x, √(x^2 + 1)) dx を計算するのに使えます。
① を変形すると
√(x^2 + 1) = u - x …②,
x = (u^2 - 1)/(2u) …③,
du/dx = 1 + x/√(x^2 + 1) …④
が導けるので、これらを ④, ②, ③ の順に使って
S = ∫ f(x, √(x^2 + 1))(dx/du) du の式から
du/dx, √(x^2 + 1), x を順番に消せば、
S は u の分数式の積分に変形されます。
分数式の積分は、部分分数分解して項ごとに積分すれば
いつでも計算できましたね。
便利と言えば便利なのですが、巧妙過ぎて、
この方法でなぜうまくいくのかが見えにくく、
受験数学のパターン解法のような不快感を残します。
これに見通しを持ち込むには、
① を 2段階に分けて置換するのがよいように思います。
∫ f(x, √(x^2 + 1)) dx をいろいろ式変形してみると、
√(x^2 + 1) というカタマリがどうしても消えずに残り
扱いづらいことがわかります。そこを改善する手段として
双曲線関数を使って x = sinh z と置換してみる。
双曲線関数の定義は sinh z = (e^z - e^-z)/2,
cosh z = (e^z + e^-z)/2 ですが、
三角関数の (cosθ)^2 + (sinθ)^2 = 1 に似た
(cosh z)^2 - (sinh z)^2 = 1 という公式があります。
このため、x = sinh z と置くと √(x^2 + 1) = cosh z になる。
dx/dz = cosh z でもあるため、
S = ∫ f(x, √(x^2 + 1))(dx/dz) dz
= ∫ f(sinh z, cosh z)/(cosh z) dz
= ∫ f((e^z - e^-z)/2, (e^z + e^-z)/2)・2/(e^z + e^-z) dz
と変形できます。
この式を見れば、 S は u = e^z の置換で
u の分数式の積分へ変形できそうだなって思いますよね。
u が ① の u と同じものです。
① は、双曲線関数や指数関数を表に出さずに
代数式だけで済ませているところが秀逸なのですが、
巧妙過ぎて、発想が伝わってきませんでした。
あと、積分の式から √(x^2 + 1) を消す別の方法としては、
x = tanθ で置換してから t = tan(θ/2) で再度置換する
という方法もあります。
こちらは、数III の受験参考書にも載ってるかな?
No.4
- 回答日時:
https://manabitimes.jp/math/673
テクニカルな置換積分として Euler Substitution(オイラー置換)
が この方法で難関大学受験に出てくるようです
部分積分 オイラー置換積分 双曲線関数による置換積分
と かなり有名と思います!
テクニカルな置換積分として Euler Substitution(オイラー置換)
が この方法で難関大学受験に出てくるようです
部分積分 オイラー置換積分 双曲線関数による置換積分
と かなり有名と思います!
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
∫exp{i(k-k')x dx =δ(k'-k)
-
e^(x^2)の積分に関して
-
cosx/xの積分の値について
-
積分の数式を声に出して読むと...
-
1/x は0から1の範囲で積分でき...
-
積分のパソコン上のの表し方...
-
広義積分∫ 【0→1】x^2 log|...
-
d(-x)は
-
1/1+tanxの積分
-
∬1/√(x^2+y^2)dxdy を求めよ。
-
2乗可積分関数とは何でしょうか?
-
インテグラルの真ん中に○がつい...
-
sgn(x)のフーリエ変換
-
ベータ関数
-
定積分=0という場合、積分され...
-
こういう積分って
-
可積分だが二乗可積分じゃない...
-
0の積分
-
積分の記号
-
任意定数と積分定数は同じですか?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^(x^2)の積分に関して
-
積分の数式を声に出して読むと...
-
0の積分
-
積分のパソコン上のの表し方...
-
d(-x)は
-
exp(ikx)の積分
-
1/x は0から1の範囲で積分でき...
-
e^(-x^2)の積分
-
∫exp{i(k-k')x dx =δ(k'-k)
-
積分の問題
-
置換積分と部分積分の使い分け...
-
不定積分∫log(1+x)/x dxが分か...
-
dtの積分が、∫dt=t+Cとなる理...
-
インテグラル∫とdxについて
-
積分の問題です ∫sinxcosxdxを...
-
cosx/xの積分の値について
-
周曲線の積分記号の意味について
-
y=1/√xの積分を教えてください
-
exp(f(x))の積分方法
-
高校の数学で積分できない関数
おすすめ情報