No.3ベストアンサー
- 回答日時:
指数としてナニカ(この場合はe)の肩に乗っかっているモノには単位があってはダメなんだ、と知っておくと良いでしょう。
単位がない数値、すなわち無次元でなくちゃいけない。この大原則は、フーリエ変換においてももちろん要請されます。で、> 周期、角振動数どっち
そういう話が出るってことは、tを時間だと解釈しているということですよね。すると、(ωt)が無次元数になるためには、ωは時間の逆数の次元を持っていなくてはならんわけです。一方、周期は時間の次元を持っている。だから、ωが周期なわけがないのは明らか。ω/(2π)が周波数[Hz]、ωは角周波数[radian/s]です。
もちろん、応用によってはtの単位がメートル[m]だということもある。その場合、ω/(2π)は空間周波数[lp/m](line pair per meter)と呼ばれたりします。
> ω は正負どちらですか?基本的に正だと思う
「基本的に」というのがどういう意味なのかは分かりませんけど、f(t)が実数値関数だという話ですと、F(ω) + F(-ω) が角周波数ωのcosine成分の振幅、F(ω) - F(-ω) が角周波数ωのsine成分の振幅を表しています。だから、正負両方が必要です。
No.2
- 回答日時:
この質問は、「クジラのヒレは脚か?」という質問に似ています。
答える人の考え方によって、
歩くはおろか水中でも立つこともできない器官を脚とは呼ばない
という立場もあるだろうし、
進化の過程で脚から変化した器官で、同じ原基から発生し
運動器であることも同じ。あれは脚の一種だ
という立場もあるでしょう。
違いは、「脚」という言葉を拡大解釈するか否かです。
フーリエ変換の「角周波数」も同様です。
実フーリエ級数のときには当に初等物理での意味通りの
角周波数であったものが、フーリエ変換に移行する際に
似て非なるものに変わった。それを
狭義の角周波数ではない という立場も、
広義の角周波数である という立場もあり得るわけです。
ω<0 であっても F(ω)≠0 になり得ることが
「角周波数」の性質として認め得るかどうか、
人によって、考え方は違うのではないでしょうか。
No.1
- 回答日時:
フーリエ変換(フーリエ積分)の角周波数ωは正負ペアで考える。
負の角周波数に物理的意味はないが、実関数f(t)で表される音声信号などを複素数で処理すると数学的な取り扱いが便利だというのがその理由。
フーリエ解析の本は通常
実フーリエ級数→複素フーリエ級数→フーリエ変換
の順で説明される。実フーリエ級数から複素フーリエ級数を導出する過程を丁寧に読めば「角周波数ωを正負ペアで考える」ことの意味がわかるだろう。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
【お題】 ・存在しそうで存在しないモノマネ芸人の名前を教えてください
-
これ何て呼びますか
あなたのお住いの地域で、これ、何て呼びますか?
-
初めて自分の家と他人の家が違う、と意識した時
子供の頃、友達の家に行くと「なんか自分の家と匂いが違うな?」って思いませんでしたか?
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
うちのカレーにはこれが入ってる!って食材ありますか?
カレーって同じルーから作っても、家庭によって入っているものや味が微妙に違っていて面白いですよね! 「我が家のカレーにはこれが入ってるよ!」 という食材や調味料はありますか?
-
ほんとになんでうごくかわからない
数学
-
高校数学です。 m^2-11m-1が整数の平方となるような正の整数mを求めよという問題で、回答はこの
数学
-
添付している画像の積分が解けません
数学
-
-
4
この積分の計算がどこで間違っているのかを教えてください
数学
-
5
おしえてgooに図形の問題を投稿したら、削除されました。なぜでしょう?
数学
-
6
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
7
iに絶対値がつくとどうなるのかを教えてください
数学
-
8
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
9
cos^2θ/tanθ=1でθを出すことはできますか? 出せるならどうやって出すのかなどを教えていた
数学
-
10
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
11
これは、log|ex+1|とはならないのですか?
数学
-
12
高校数学の確率が得意な方おられますか? 分母に来る数は大体合うのですが分子にくる数がよくわからず度々
数学
-
13
関数を定積分した値に絶対値とる か 関数の絶対値をとってから定積分する場合 値が異なるとこはあります
数学
-
14
cosθ-cosαが正であることを示し方がわかりません。 ただし、-π/2<θ<π/2 0<α<π/
数学
-
15
この数学の問題解き方あってるか見てほしいです
数学
-
16
対数
数学
-
17
自然定数を底にしたときの、log(π) の 手計算での値は
数学
-
18
数学I アホらしい質問なのでそんなこと考えることは無駄などの解答は受け付けておりません。 また自分的
数学
-
19
これめちゃあやしくないですか???
数学
-
20
三角関数の変換で納得いかないところがあります
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
e^(x^2)の積分に関して
-
積分の数式を声に出して読むと...
-
e^(-x^2)の積分
-
0の積分
-
定積分=0という場合、積分され...
-
高校の数学で積分できない関数
-
積分においてxはtに無関係だか...
-
e^(ax)の微分と積分
-
積分の問題
-
1/x は0から1の範囲で積分でき...
-
数学Ⅲの積分の問題!どう置換し...
-
不定積分∫log(1+x)/x dxが分か...
-
積分のパソコン上のの表し方...
-
積分 e^sinx
-
置換積分と部分積分の使い分け...
-
三重積分がわかりません。
-
exp(ikx)の積分
-
(x^3/√(x^2+1))の不定積分
-
インテグラル∫とdxについて
-
1/s(s+a)の逆ラプラス変換と1/...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報