高校数学です。
m^2-11m-1が整数の平方となるような正の整数mを求めよという問題で、回答はこの式をn^2と置いていました、ここまでは私もそうしました。しかし、このnをゼロ以上の整数と置いていたのですが、そこが疑問です。
回答通りにすれば確かにゼロ以上にしないと後の方で不等式が立てられないのですが、この式が「整数の平方となる」と書いているのでnはマイナスの場合もあるくないですか?
それを正の整数と決めていいのでしょうか?
どなたか教えていただけると助かります。
A 回答 (8件)
- 最新から表示
- 回答順に表示
No.8
- 回答日時:
>正の解と決めてしまうとマイナスの解がもしあった場合、それが解答として出てこないようになるのではと思いました
それは 違うでしょ。
n²=(-n)² ですから、
n>0 だけを考えれば 充分です。
No.7
- 回答日時:
m^2-11m-1=n^2・・・①から
(2m-11+2n)(2m-11-2n)=125=5^3・・・②
n<0の場合を考えると
①の左辺はm=0のときもm=6のときも<0だから
①の左辺が>0であるためには正の整数mは>6が必要。
すると②で2m-11-2n>0であるから2m-11+2nも>0、
そして2m-11+2n<2m-11-2nだから②から
2m-11+2n=1、2m-11-2n=125・・・③
か
2m-11+2n=5、、2m-11-2n=25・・・④ が出てくる。
③からm=37、n=-31
④からm=13、n=-5
結局n>0とした場合とmの結果は同じです。
No.6
- 回答日時:
>この式が「整数の平方となる」と書いているのでnはマイナスの場合もある
その通りですが、(-n)²=n² ですから、n≧0 で考えれば 充分ですよね。
勿論 n<0 の場合が有っても それは答えには影響しませんよね。
求めるのは m の値ですから。
No.5
- 回答日時:
m^2-11m-1=n^2
(m-11/2)^2-11^2/4-1=n^2
(m-11/2)^2-121/4-4/4=n^2
(m-11/2)^2-125/4=n^2
(2m-11)^2-125=4n^2
(2m-11)^2=125+4n^2
(2m-11)^2-4n^2=125
(2m-11+2n)(2m-11-2n)=125
{2(m+n)-11}{2(m-n)-11}=125=5^3
2(m+n)-11<0と仮定すると
2(m+n)-11=-5^k
2(m-n)-11=-5^(3-k)
0≦k≦3となる整数kがある
2(m+n)=11-5^k
2(m-n)=11-5^(3-k)
4m=22-5^k-5^(3-k)
k=0のとき4m=22-1-125=-104<0となってm>0に矛盾
k=1のとき4m=22-5-25=-8<0となってm>0に矛盾
k=2のとき4m=22-25-5=-8<0となってm>0に矛盾
k=3のとき4m=22-125-1=-104<0となってm>0に矛盾
だから
2(m+n)-11>0
2(m-n)-11>0
2(m-n)-11=5^k
2(m+n)-11=5^(3-k)
0≦k≦3となる整数kがある
k=0のとき
2(m-n)-11=1
2(m+n)-11=125
2(m-n)=12
2(m+n)=136
m-n=6
m+n=68
2m=74
m=37
37-n=6
31=n
∴
m=37
k=1のとき
2(m-n)-11=5
2(m+n)-11=25
2(m-n)=16
2(m+n)=36
m-n=8
m+n=18
2m=36
m=18
18-n=8
10=n
∴
m=18
k=2のとき
2(m-n)-11=25
2(m+n)-11=5
2(m-n)=36
2(m+n)=16
m-n=18
m+n=8
2m=36
m=18
18+n=8
n=-10←(nはマイナスの場合もある)
∴
m=18
k=3のとき
2(m-n)-11=125
2(m+n)-11=1
2(m-n)=136
2(m+n)=12
m-n=68
m+n=6
2m=74
m=37
37+n=6
n=-31←(nはマイナスの場合もある)
∴
m=37
No.4
- 回答日時:
m^2-11m-1=n^2
(m-11/2)^2-125/4=n^2
(2m-11)-2-125=4n^2
(2m-11)^2=125+4n^2
(2m-11)^2-4n^2=125
(2m-11+2n)(2m-11-2n)=125
{2(m+n)-11}{2(m-n)-11}=125
2(m-n)-11=1,2(m+n)-11=125 のとき
2(m-n)=12
2(m+n)=136
m-n=6
m+n=68
2m=74
m=37
37-n=6
31=n
∴
m=37
2(m-n)-11=5,2(m+n)-11=25 のとき
2(m-n)=16
2(m+n)=36
m-n=8
m+n=18
2m=36
m=18
18-n=8
10=n
∴
m=18
No.3
- 回答日時:
「あるくない」という日本語の意味が謎ですが, n^2 = (-n)^2 だから n が負になるとしても -n という正の値を考えれ
ばいいのでなんら問題ではない.No.1
- 回答日時:
m^2 - 11m - 1 = n^2 に整数解 m, n があるのなら、
|n| = N と置けば、
m^2 - 11m - 1 = N^2, N ≧ 0 でもあります。
マイナスの解があるかないかじゃなく、
非負の解が存在するって話なんですよ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 高校1年の数学です! 3x-5y=6の1時不定方程式の整数解を求めよ 上が問題集の回答です。 私の下 2 2023/02/26 11:57
- 数学 整数問題 12 平方 32 2023/05/02 13:23
- 数学 高一数学 整数 〔 チャート 387ページ 問題136番 〕 73x-56y=5の整数解を求めよ。 6 2023/10/12 23:23
- 数学 めちゃくちゃ急ぎです!助けて!!!数学の問題で ユークリッドの互除法 方程式なのですが 互除法を用い 6 2024/03/04 06:19
- 数学 倉敷芸術科学大学 整数問題 1 2024/03/25 18:53
- 数学 上三角行列のn乗の証明 2 2023/07/23 21:45
- 統計学 統計学 このデータはある母集団からとった標本である 42 41 48 40 45 37 43 47 4 2022/12/23 01:29
- 数学 数学の問題で、素数の性質を求めよという問題が出ましたが、整数であること と回答するとなぜか不正解にさ 8 2023/01/13 07:41
- 数学 nC2=2016 の等式を満たす正の整数nの値を求める問題で n(n-1)/2=2016 n^2-n 4 2023/04/07 16:58
- 数学 高校数学 数2 log10の2=0.3010、log10の3=0.4771とする (1)2^n >1 6 2024/02/10 17:41
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
2024年に成し遂げたこと
今年も残すところわずか。 皆さんが今年達成したことを教えていただきたいです。 どんな小さなものでも構いません。
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
我が家のお雑煮スタイル、教えて下さい
我が家のお雑煮スタイル、教えて下さい! (お汁)味噌汁系? すまし汁系? (お餅)角餅? 丸餅? / プレーンなお餅? あんこ餅?
-
0≦x≦1において 赤く囲んだ不等式を証明する問題ですが、この解き方は合ってますか?
数学
-
数学の約束記号の問題について教えてください。
数学
-
高校数学です。 sin70-sin50+cos100 これってどうやって解きますか?考え方のポイント
数学
-
-
4
図形について
数学
-
5
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
6
|x+2|>0 計算方法
数学
-
7
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
8
添付している画像の積分が解けません
数学
-
9
命題がわかりません!!
数学
-
10
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
11
これは、log|ex+1|とはならないのですか?
数学
-
12
数学Aの平面図形の質問です。 他は自分で解けて解説を作りましたが、 二番目が解けないです。
数学
-
13
4で割った余りが3でないときは図のように書いてもいいんですか?できればその根拠となるサイトを載せてい
数学
-
14
x>0,y>0→x^x+y^y≧x^y+y^x?
数学
-
15
高校数学についてです。 問題は何でも良いのですが、ある問いでグラフを書くものがあったとして、それに漸
数学
-
16
数学の問題で 因数分解の問題で、なぜ(x+1)^2が次の{}の中に入った瞬間に2乗ではなくなるのです
数学
-
17
こうなる理由が分かりません
数学
-
18
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
19
理解しがたい部分があります。解説お願いします。放物線y=x²上の異なる2点P(p, p²), Q(q
数学
-
20
この数学の問題解き方あってるか見てほしいです
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
Excelで合計値を基にデータを均...
-
aの値に関係なくとよく問題で見...
-
3次関数と直線が接する場合、...
-
解なし≠解はない
-
微分の重解条件は公式として使...
-
適正解と最適解
-
解に3つ以上±や∓がある時複号...
-
16の4乗根は±2ではない!?
-
3次関数と1次関数が接するとき
-
複数の品目での単価と全体の合...
-
微分方程式 定常解について・・・
-
tanX=Xの解
-
x^y=y^x (x>y)を満たす整数解は...
-
何故グラフに接するとき重解に...
-
2次不等式の解の答え方について
-
y''+ 2y'+2y= xe^(-2x)の特殊解...
-
連立方程式が解けません(x、yが...
-
微分方程式で、分母=0の場合は...
-
数1 この問題の(3)で少なくとも...
-
二次不等式について
おすすめ情報
ちょっと補足します、正の解と決めてしまうとマイナスの解がもしあった場合、それが解答として出てこないようになるのではと思いました、説明が下手ですみません。