
No.2ベストアンサー
- 回答日時:
取り敢えず,説明してみます。
梁(左端A-右端B)に任意の荷重を載荷すると,梁は下方にたわみます。この時,曲率中心(O点)から,撓んだ梁の中立軸までの距離を曲率半径(ρ)とします。
左端A点から任意の距離(x)のたわみは(y)になると仮定し,たわみ後の梁の中立軸上の点をCとします。ここで,点Cから微小距離(dx)離れた位置(x+dx)では,微小たわみが生じ,たわみの合計は(y+dy)となり,この点をD点とします。
この時のたわみ角(θ)は,tanθ=dy/dxですが,θが微小であれば,
θ=dy/dx ・・・(1)
で近似することが出来ます。
また,点Cから点Dまでの距離は,ds=√(dx^2+dy^2)になります。ここで,角CODを(dθ)とすれば,三角形CODは(ds)を底辺,曲率半径を(ρ)等辺とする2等辺三角形になるので,(ds)は,ds=ρ・dθになります。ここで,ds≒dxと考えれば,dx=ρ・dθ即ち,
1/ρ=dθ/dx ・・・(2)
で表すことが出来ます。(2)式のθに(1)式を代入して,
1/ρ=(d/dx)・(dy/dx)=d^2y/dx^2 ・・・(3)
を得ることが出来ます。
一方,フックの法則(σ=E・ε)において,ひずみ(ε)は,変形量/元の長さ=たわみ/曲率半径,ですので,
σ=E・y/ρ ・・・(4)
です。ここで,梁のC点の断面に生じる力(Δf)は,応力(σ)に微小面積(ΔA)を乗じたもの,曲げモーメント(M)は力(Δf)に距離(y)を乗じ,全面積について合計したもの,つまり積分したものですので,
M=∫σyΔA ・・・(5)
です。ここで,(5)式の(σ)に(4)式を代入すれば,
M=∫Ey/ρ・yΔA ・・・(6)
を得ます。式(6)で,E/ρをインテグラルの前に出して,
M=E/ρ・∫y^2・ΔA
となりますが,ついでに,インテグラル以降の式は,断面2次モーメント(I)の事ですので,
M=EI/ρ ・・・(7)
と書くことが出来ます。変形して,
1/ρ=M/EI ・・・(8)
を得ます。
式(3)と式(8)によって,
1/ρ=d^2y/dx^2=M/EI
変形して,また,曲げモーメントの方向を考慮して,負符号を追加して,
EI(d^2y/dx^2)=-M
となります。
下手な説明で申し訳ないですが,この程度で如何でしょうか。
No.1
- 回答日時:
材料力学か、構造力学の本に、載っていると思います。
本屋さんで、探して、ご自身に最もよく合った本を、
お読みになることを、お勧めします。
とても、ここに書けるような量ではありません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
L型の金具の根元にかかるモーメ...
-
最大曲げモーメント公式 Mmax=...
-
角パイ・単管パイプの耐荷重を...
-
断面形状が変化する梁の撓み量
-
平面梁の支持点に掛かる荷重の...
-
4点支持曲げモーメント
-
慣性モーメント,回転半径とは?
-
固定モーメントとは
-
構造力学、連続梁の計算を教え...
-
ブラジウスの解って何ですか?
-
材力 断面が変化するはり
-
曲げモーメント!
-
構造力学:モールの定理から導...
-
変断面梁のたわみについて
-
この構造力学の問題を教えて下さい
-
4点曲げの弾性率E計算過程
-
偶力のモーメント
-
磁気のN極とS極は+と-のどちら...
-
L字型のはりの支点反力について...
-
集中荷重が掛かる片持ちハリの...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
角パイ・単管パイプの耐荷重を...
-
L型の金具の根元にかかるモーメ...
-
断面形状が変化する梁の撓み量
-
最大曲げモーメント公式 Mmax=...
-
4点支持曲げモーメント
-
4支点の反力の求め方
-
ブラジウスの解って何ですか?
-
2つの分子の双極子モーメント...
-
図三見てください 図三のように...
-
強度計算について
-
モーメントの問題。
-
構造力学:モールの定理から導...
-
平面梁の支持点に掛かる荷重の...
-
材力 断面が変化するはり
-
慣性モーメント,回転半径とは?
-
構造力学、連続梁の計算を教え...
-
モーメントとトルクの違い
-
片持ち梁に作用するトルク
-
材料力学のはりについて質問で...
-
物理モーメントの質問
おすすめ情報