質問内容じたいがわからないので、どなたかくわしくおねがいします!

広義積分

     ∫(0~∞)sin(x)/xdx=π/2

は既知として、次の等式を示し、積分記号化ができない例を作れ。

     ∫(0~∞)sinα(x)/xdx=π/2*signα
ただし、記号signαはα>0であれば1、α<0であれば-1であるような関数である。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

置換積分をすればよいと思います



 例えば ax=y とし dx=1/a*dy
a>0 のとき積分範囲が0から∞となり既知の積分と一致し
       π/2
a<0 のとき積分範囲が0から-∞となり既知の積分と異符号となり
-π/2
となります

この回答への補足

ありがとうございます。では、積分記号化できない例を作れというのは具体的にどうすればよいのでしょうか?

補足日時:2002/01/19 22:09
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q球の体積を求めるときの積分範囲について

球の体積を求める時の積分範囲が
r方向が0からr
θ方向が0からπ
φ方向が0から2π
になる理由が分かりません。

なぜθ方向も球なんだから2πまで積分しないのかわかりません。
それと、θとφ方向の積分範囲が逆になってしまってはだめなんですか?

Aベストアンサー

No.1です。

>なぜθ方向も球なんだから2πまで積分しないのかわかりません。

体積Vと積分の式の関係を正しく理解して体積を積分の式に直さないといけないですね。

>それと、θとφ方向の積分範囲が逆になってしまってはだめなんですか?

体積Vと積分の式の関係を正しく理解して体積を積分の式に直していれば
θとφ方向の積分範囲が逆になっても何ら問題ありません。
体積を正しく積分の式に直せていないところに問題があるのです。
機械的に体積要素を(r^2)sinθdrdθdφと思い込んでしまっていることが
間違いの原因です。
体積V(必ず正)を求める時は、体積要素dV=dxdydzも正でなければ
ダメです。
dV=dxdydz=(r^2)sinθdrdθdφ>0
がπ≦θ≦2πで成り立たないことに気がつかないといけないですね。
体積Vが微小な正の積分要素dVを体積Vの領域全体にわたって足し合わせたものです。負の積分要素が現れるのは体積Vが正しく積分の式で表せていないことを意味します。これは最も基本的な体積積分の概念です。
積分範囲を機械的に置き換えることは問題なくても、積分要素dVが負にならないということに反するような積分の式はおかしいと考えないといけないですね。つまり、積分要素dV(すなわち被積分関数)が正しく表せていないことに気がつかないといけないですね。

以下を熟読してあなたの疑問を解決してください。

球座標(3次元での極座標の1つ)で計算しているのだからANo1で述べた通り、
定石通り計算すれば
V=∫∫∫{x^2+y^2+z^2≦R^2(R≧0)} dxdydz
=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} |J|drdθdφ
となります。
参考URLをご覧になって下さい。
Jはヤコビ行列、|J|は正確にがヤコビ行列の行列式det(J)の絶対値になります。

ヤコビアン|J|は球座標では
det(J)=(r^2)sinθなので
|J|=(r^2)|sinθ| ...(※)
となります。
積分範囲0≦θ≦πではsinθ≧0なので |J|=(r^2)sinθ
となります。
V=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} |J|drdθdφ
=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} (r^2)sinθdrdθdφ...(☆)

この積分を積分範囲{0≦r≦R,0≦θ≦2π,0≦φ≦π}で積分しても構いませんがこの時は(※)に戻って
V=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} |J|drdθdφ
0≦θ≦2πではsinθが正負の値をとるので
|sinθ|=sinθ(0≦θ≦πの時)、|sinθ|=-sinθ(0≦θ≦2π)
となるので
V=∫∫∫{0≦r≦R,0≦θ≦2π,0≦φ≦π} (r^2)|sinθ|drdθdφ...(◆)
で球の体積を計算しないといけないということです。

体積要素dVで言えば
dV=dxdydz=|J|drdθdφ=(r^2)|sinθ|drdθdφ
となります。これを球の体積の場合、球の内部を重複しない積分範囲で積分すれば良いというわけです。
積分範囲は
(A){0≦r≦R,0≦θ≦π,0≦φ≦2π}
(B){0≦r≦R,0≦θ≦2π,0≦φ≦π}
(A),(B)いずれでも構いませんが
被積分関数のsinθに絶対値がついていることに
注意しないといけません。

(※)のヤコビアン|J|=(r^2)|sinθ|は
0≦θ≦πでは|J|=r^2sinθ
π≦θ≦2πでは|J|=-r^2sinθ
となるので
(A)の場合の体積Vの積分は(☆)の式になりますが、
(B)の場合の体積の積分は(◆)の式になって|sinθ|の絶対値を外せば
V=∫∫∫{0≦r≦R,0≦θ≦2π,0≦φ≦π} (r^2)|sinθ|drdθdφ
=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦π} (r^2)sinθdrdθdφ
+∫∫∫{0≦r≦R,π≦θ≦2π,0≦φ≦π} (r^2)(-sinθ)drdθdφ
=2∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦π} (r^2)sinθdrdθdφ

この積分計算を質問者さんは,|sinθ|の変わりにsinθとしてしまったことにより

V=∫∫∫{0≦r≦R,0≦θ≦2π,0≦φ≦π} (r^2) sinθdrdθdφ
=0
という球の体積がゼロ?となると誤った結果が出るのです。

質問の疑問はとけましたか?

これは以下の面積Sの積分計算に類似した誤りに通ずるものがあります。
重要なので繰り返しますが
体積Vと積分の式の関係を正しく理解して体積を積分の式に直さないといけないですね。

y=sinθとx軸(θ軸)で囲まれた範囲[0~2π}面積Sを求めるとき、機械的に積分すれば S=∫[0→2π} sinθdθ=0
というおかしな結果が出ます。面積はy=sinθのグラフを描けば、有るので、
S=∫[0→π} sinθdθ+∫[π→2π} (0-sinθ)dθ
=∫[0→2π} |sinθ|dθ=2∫[0→π} sinθdθ=4
のようにsinθの絶対値をとれば正しい面積Sが求まります。

参考URL:http://wasan.hatenablog.com/entry/20110319/1300568061

No.1です。

>なぜθ方向も球なんだから2πまで積分しないのかわかりません。

体積Vと積分の式の関係を正しく理解して体積を積分の式に直さないといけないですね。

>それと、θとφ方向の積分範囲が逆になってしまってはだめなんですか?

体積Vと積分の式の関係を正しく理解して体積を積分の式に直していれば
θとφ方向の積分範囲が逆になっても何ら問題ありません。
体積を正しく積分の式に直せていないところに問題があるのです。
機械的に体積要素を(r^2)sinθdrdθdφと思い込んでしまっていることが
間違いの原因...続きを読む

Q∫0~1xdx=[1/2x^2]0から1=1/2 不定積分・定積分は?

次のような式があります。

∫0~1xdx=[1/2x^2]0~1=1/2

※∫の範囲?はここでは記述できないため、上記のように書いています。
そこで、
1)不定積分は[1/2x^2]0~1、定積分は1/2であるということで間違いないでしょうか?
2)この式では∫0~1xdxを積分すると1/2になるという説明でおかしくないでしょうか?
ご回答お願いいたします。

Aベストアンサー

>1)不定積分は[1/2x^2]0~1、定積分は1/2であるということで間違いないでしょうか?
「(1/2)x^2」は原始関数といいます。原始関数に任意定数Cを加えたものが不定積分結果になります。
「1/2」は定積分を計算した結果です。
不定積分は積分範囲の無い積分「∫xdx」のことを不定積分と言います。
定積分は積分範囲を指定した積分「∫[0→1] xdx」のことを定積分といいます。積分結果は本来、不定積分や定積分とはいいません。

>2)この式では∫0~1xdxを積分すると1/2になるという説明でおかしくないでしょうか?
「xを0から1まで積分すると1/2になる。」
「定積分∫[0→1] xdxの積分結果(積分値)は1/2になる。」
といった説明で良いでしょう。

Q2B範囲の受験 定積分 体積 出題される?

カテゴリを迷ったのですが、まずはこちらで質問させてください

現行課程において大学受験の数学で「2Bが範囲」と銘打っているのに
定積分を用いて体積を求める問題が出題されたことはありますか?
(【定積分を使って求積すると楽な問題】とかでは無く
【実質的に定積分を使って求積しないと
試験時間内に正解できないような問題】という意味です)

それというのも、現行課程において定積分を用いて体積を求める手法が
3Cに入るのか、2Bに入るのかわかりにくいのです
建前上は3Cということになっているようなのですが
青チャート2Bですら「発展」という扱いで、定積分を用いた体積を求める手法を
紹介しているのです

Aベストアンサー

京都大学2002年後期文系数学の最後の問題がそれですね。
##1つ前の課程ですが、積分についての扱いは変わってないはずなので。

Qlim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

lim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

ということなのですが、区分求積法を使おうとしたのですが、よくわかりません。
複雑ですが、解けた方は教えていただけないでしょうか。

Aベストアンサー

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従って、そのフーリエ係数はn→∞のとき0に収束する。
(リーマン-ルベグの定理を用いた。)よって第二項目の積分は0となる。

よって、lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)=1/2・log(1+π/2)
となる。

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従っ...続きを読む

Q電束密度Dと体積電荷密度σ間の関係を微分形、積分形であらわすとどのよう

電束密度Dと体積電荷密度σ間の関係を微分形、積分形であらわすとどのようになりますか?

Aベストアンサー

>ただ、電束密度Dと表面電荷密度ρ(C/m^2)の関係をもとめたいのです。
>マクスウェル方程式のdivD=ρを用いるのですか?

divD=ρこそが質問者さまが欲している関係式なのでは?
divが微分演算子なので、これが微分形。
この式を体積積分して、Gaussの定理を用いて積分形を得ます。

Q数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交
[(2)の解]
この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して,
a_0=2/π∫[0..π]f(x)dx
は上手くいったのですが
a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから
2/π∫[0..π]f(x)cos(nx)dxに変形できません。
どのようにして変形するのでしょうか?

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1...続きを読む

Aベストアンサー

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでしょうか?
質問の文に
『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。』
とあったのでf(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)と表せる前提で話をして良いのかなと思ったのです。
また、f∈R[0,π]の関数を周期[-π,π]で展開することも可能なので一概に周期[0,π]とも言えないと思うのです。
(ただし、その場合にも偶関数として展開、奇関数として展開などの適当な前提は要りますが)


どうやら私が質問や問題の内容を推測して回答してしまったのがよくなかったようですね。
今回は補足要求と言うことにしておきます。

・今回の問題(2)の題意は
  fがa_0/2+Σ[n=1..∞]a_ncos(nx)で書けることを示すことですか?
それとも
  f(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)とするとa_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dxとなることを示すことですか?

・『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数』とはこの場合どういう意味でしょう?把握してらっしゃいますか?

・fを展開する際の周期ですが本当に[0,π]ですか?
[0,π]ではcos(nx)とsin(mx)が直交しないですし、
f(x)=Σ{b_n*sin(nx)}と奇関数として展開するしか出来ない気がするんですが。

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでし...続きを読む

Q重積分の体積

重積分の体積の問題で分からないものがあります。
どなたか解説頼みます(__

(1)Z=2-x^2-(y/2)^2とxy平面で囲まれる立体の体積を求めよ。
(2)2曲面Z=x^2+y^2-1とZ=-2x^2-2y^2で囲まれる立体の体積
(3)球x^2+y^2+z^≦a^2と円柱x^2+y^2≦axの共通部分。ただしa>0。

(1)まず与えられた式を立体に図示できないのですが、それぞれどんな形の式になるのでしょうか?
(2)図示できなので範囲もわからないです^^;

それさえできればあとは積分するだけですよね?

(1),(2)の疑問を解説して下さい(__

Aベストアンサー

#1,#2です。

(1)
(1)も立体の図を作りましたので添付します。

A#1で書いた積分はできましたか?

当方の計算では「V=4π」と出ています。

(2)
当方の計算では「V=π/6」と出ています。

Q2重積分を使った球の体積の求め方

漠然とした質問なんですが、球の体積を2重積分を用いて求めるのはどうしたらいいですか?
どなたか詳しい方教えてください。

Aベストアンサー

原点を中心とする半径 R の球を考えることにします
xy 平面上の点 (x,y) のところでは球面までの高さが
(1)  z = √(R^2 - x^2 - y^2)
ですから,
微小体積 z dx dy を 領域 0≦ x^2 + y^2 ≦ R^2
について積分すればいいでしょう.

Q∫(0,∞){x/(exp(x)+1)}dx=π^2/12 の解き方を

∫(0,∞){x/(exp(x)+1)}dx=π^2/12 の解き方を教えてください。
岩波 数学公式Iにこの公式が載っているのですが、どのように式変形をして答を得るのかが分かりません。
よろしくお願いします。

Aベストアンサー

∫(0,∞){x/(exp(x)+1)}dx=π^2/12・・・・(1)
被積分関数を以下のように変形する。
x/(e^x+1) = x・Σ[k=1~∞](-1)^(k-1)・e^(-kx)   (x≧0)
fk(x)=(-1)^(k-1)・x・e^(-kx) (k=1,2,3・・・)とすれば
Σ[k=1~∞]|fk(x)|は任意の0<a<bに対してa≦x≦bで一様収束して
Σ[k=1~∞]{∫(0,∞)|fk(x)|dx}
= Σ[k=1~∞]{∫(0,∞)x・e^(-kx)dx}
= Σ[k=1~∞]{[-1/k・xe^(-kx)](0,∞) + 1/k・∫(0,∞)e^(-kx)dx}
= Σ[k=1~∞]1/k^2n
は収束する。

よって
∫(0,∞){x/(e^x+1)}dx = Σ[k=1~∞]{(-1)^(k-1)・1/k^2} = π^2/12

----------------------------------------------------
以下の事実を用いている!
φ(x),fk(x)(k=1,2,3・・・)が0<x<∞において連続且0<x<∞に含まれる
任意の閉区間においてΣ[k=1~∞]|fk(x)|が一様収束するものとする。
このとき
Σ[k=1~∞]{∫(0,∞)|φ(x)||fk(x)|dx},∫(0,∞)|φ(x)|{Σ[k=1~∞]|fk(x)|}dx
のどちらか一方が収束すれば
Σ[k=1~∞]{∫(0,∞)φ(x)・fk(x)dx} = ∫(0,∞)φ(x){Σ[k=1~∞]fk(x)}dx
が成り立つ。
------------------------------------------------

∫(0,∞){x/(exp(x)+1)}dx=π^2/12・・・・(1)
被積分関数を以下のように変形する。
x/(e^x+1) = x・Σ[k=1~∞](-1)^(k-1)・e^(-kx)   (x≧0)
fk(x)=(-1)^(k-1)・x・e^(-kx) (k=1,2,3・・・)とすれば
Σ[k=1~∞]|fk(x)|は任意の0<a<bに対してa≦x≦bで一様収束して
Σ[k=1~∞]{∫(0,∞)|fk(x)|dx}
= Σ[k=1~∞]{∫(0,∞)x・e^(-kx)dx}
= Σ[k=1~∞]{[-1/k・xe^(-kx)](0,∞) + 1/k・∫(0,∞)e^(-kx)dx}
= Σ[k=1~∞]1/k^2n
は収束する。

よって
∫(0,∞){x/(e^x+1)}dx = Σ[k=1~∞]{(-1)^(k-1)・1/k^2} = π^2/12

---------...続きを読む


人気Q&Aランキング

おすすめ情報