LEEDパターンから結晶構造を決める方法ってどうやるんでしょうか?
なんかベクトルみたいなのを使っているみたいですが。

初心者の人でもわかるようなLEEDの本やホームページなどあれば教えていただきたいのですが。できればLEED関係の方のおすすめをお願いします。

A 回答 (1件)

おはようございます。


以前、128yenさんに助けていただいた者です。

LEEDの回折像は、原子配列に対しての逆格子の一部です。
実格子の格子間隔がaとすると、波数による逆格子の格子間隔はaの-1乗になります。
つまり、回折像の間隔が2倍になると、原子の間隔が1/2になるという意味です。
ここで、距離は逆数になりますが方向は保存されます。
ここから回折像の周期や回折点の間隔のパターンを調べると、
実格子の間隔、原子配列のパターンと周期が推測できます。

例えばW(100)などの正方格子をLEEDで観察すると、縦横の長さがaとすると観察スポットも縦横aの-1乗と正方逆格子が観察できす。

   W原子→・        W(100)正方逆格子
    ・・・           ・・・
    ・・・           ・・・
    ・・・           ・・・

ここでもしW(100)正方格子の上(on-top)に何かの原子が吸着していたとします。
縦にa、横に2aの間隔で吸着しているとすると、
逆格子の回折スポットは、実格子の逆数倍、すなわち

W原子→・、W上の吸着原子→*    
   *・*・*            ・*・*・
   *・*・*            ・*・*・
   *・*・*            ・*・*・
   p(2×1)構造         LEESによるp(2×1)パターン

となります。ここでpは基本(primitive)を表す記号です。ほかにもc(center)などがあったと思います。cの結晶構造の決め方は忘れました。すいません。


このホームページで扱っているのはRHEEDですが、例がでていてわかりやすかったです。
http://www.nagaoka-ct.ac.jp/me/oishi/research.html

逆格子については(難しいですが)ここのホームページがありました。
http://www2c.airnet.ne.jp/phy/phy/42.html

あと私の場合、この参考書を見て勉強しました。
表面科学入門/小間篤/八木克道/塚田捷/青野正和/発行所:丸善株式会社/平成6年11月30日

表面分析を始めてまだ1年も経っていない若造ですが、少しでもアドバイスになれば幸いです。

参考URL:http://www.nagaoka-ct.ac.jp/me/oishi/research.html http://www2c.airnet.ne.jp/phy/phy/42.html
    • good
    • 0
この回答へのお礼

たしかX線か何かで答えたような気がします。お役に立てたでしょうか?
とても丁寧に回答していただいてありがとうございました。実格子と逆格子のイメージがわかなかったのですが、参考URLを見て少しは理解できた気がします。
gods-twilightさんのおすすめの参考書を購入して、LEEDを頑張って勉強しようと思います。
本当にありがとうございました。

お礼日時:2002/01/28 18:04

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q実空間と逆空間のイメージとつながり

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点になるのは球面はが広がった時に干渉して強め合ったところだけ出てきたってことですよね。
しかし、回折点がどの格子面に対応するのかがよく分かりません。(結晶の向きが分かっているってことなら、いいのですが。どこから面を透過してきた波なのか分からないのに基準はどこにとるのでしょう?)みなさんはどのようにはっきりとしたイメージが持てるようになりましたか、コツのようなものをお教えください。
ちなみに関連したことで、フーリエ変換というのも時間→(角)周波数ですから、単位を見て逆数になっているのでデルタ関数はいろんな周波数を含んでいるなぁとはなんとなく式を見て分かるのですが、こちらも(変換の過程の)イメージがはっきりしないのです。
どうもこれらの知識が繋がってきません。
これらのイメージを表示できるフリーソフトなどがあれば教えて下さい。
よろしくお願いします。

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点に...続きを読む

Aベストアンサー

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆空
>間に対応しているのか間のイメージがはっきりとつかめ
>ません。
については結論から言って上に書いた関係をはがき程度のメモに絵を描いてポケットに忍ばせておき、時折その絵を眺めつつイメージをたくましくしていく以外にないのではないでしょうか。フーリエ変換の関係も同じです。
このあたりのイメージを強めていくのに下記URLが参考になると思います。そこには「マイクロ波による散乱実験を通して逆格子空間を体感する」とあります。がんばってください。
(P.S)
フリーソフトは知りませんが、バンド理論というキーワードで検索すればヒットするかも知れません。

参考URL:http://labeweb.ph.kagu.sut.ac.jp/LabExercise/micro/micro.html

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆...続きを読む

Q台形の重心を求めるには

上底a 下底b 高さ h とした場合、台形の重心をもとめる公式は、 (2a+b)/(a+b)*h/3 でよろしいでしょうか?

Aベストアンサー

計算してみました。
面積
 A=(a+b)h/2
下底周りの断面一次モーメント
 S=a・h^2/2 + (b-a)h^2/6
  =h^2(2a+b)/6

重心位置、S/Aですから、
 G=(2a+b)/(a+b) ・ h/3

合ってますね。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q単位変換

電圧の単位であるボルト(V)をエネルギー単位であるエレクトロンボルト(eV)にしたいのです。どうしたらいいでしょうか??教えて下さい。お願いします。

Aベストアンサー

 「理化学辞典 第5版」(岩波)によると,eV(電子ボルト)とは,『電気素量 e の電荷をもつ粒子が真空中で電位差1V の2点間で加速されるときに得るエネルギー』とあります。

 例えば,電気素量 e の電荷をもつ粒子であれば,1 V で 1 eV に対応しますが,電気素量 2e を持つ粒子であれば,1 V で 2 eV になります。

 つまり,電位差(V)が決っただけではエネルギ-は決りませんので,他に条件が無い限りは,ご質問の様な V を eV に変換する事はできないと思います。

 いかがでしょうか。

QSTM AFMは表面の何を見ているの?

STMはトンネル電流で、AFMは引力、斥力(原子間力)を用いて表面原子像を測定するとか、STMは試料が導電性でなければならないとかはわかるんですけど、STM、AFMは表面の何を見ているのかよくわかりません。もし、試料が導電性ならばSTM、AFMでどんな事がわかり、どんな像が得られるのか教えてください。

Aベストアンサー

単純に言えば、STMは表面と探針間の一定電気抵抗面の凹凸を像にします。だからより電気を通すところは盛り上がって、通さないところはへっ込みます。
AFMは仰るとおり、一定の原子間力の凹凸を像にします。
よって、表面の凹凸がそのまま電気の通しやすさが同じなら同じ像が得られます。

例えば専門的な話しですがSi(111)7*7表面はSTMもAFMもほぼ同じ像が得られています。SrTiO3という物質の表面では、表面に出ている酸素だけが電気を通しにくいので(だったかな?)その部分だけSTM像では暗くなるにも関わらず、AFMでは原子が存在するので明るく出る等のちがいがあります。しかしこれらの例は全て最近開発されたノンコンタクトAFMというもので得られたAFM像のことです。

AFMにはコンタクトモードとノンコンタクトモードがあります。そのほかにもタッピングモードやフリクションモード等。一般にAFMというとコンタクトモードをさします。これは実際原子間力と言っても、かなり硬いカンチレバーを用い、表面に接触させて像を取得しなければならないので、原子像等は得られません。(一部特殊な表面除く)カンチレバーの先もかなり鋭くないので、解像度もかなり落ちます。
よって、試料が導電性のものであれば、広い範囲で大きな凹凸の表面であれば両方ともほとんど同じ像が見えます。実際、グラファイト表面や金の蒸着膜など、どっちで見てもおんなじような像です。しかしあらゆる条件で同じ像が見えるかというと見えないです。それは動作原理というよりもSTMは非接触で、AFMは接触で像をえることが一番大きな原因だからです。

こういったAFMの弱点を改善するため、真空中にて非常に鋭い先をもったカンチレバーを使い、接触させ無いように改良したのが前述のノンコンタクトモードです。このモードとSTM像を比較しだしたのが学会でもつい最近のことですのでこれから色々と面白そうなことが期待出来ます。

>試料が導電性ならばSTM、AFMでどんな事がわかり、どんな像が得られるのか教えてください。

このご質問に対しては 表面科学のVol.23(2002) に非常に正しい学問レベルでお答えが載っていますので、もし真剣にご興味がおありならばこのレベルで確認されるのがよろしいかと思います。

単純に言えば、STMは表面と探針間の一定電気抵抗面の凹凸を像にします。だからより電気を通すところは盛り上がって、通さないところはへっ込みます。
AFMは仰るとおり、一定の原子間力の凹凸を像にします。
よって、表面の凹凸がそのまま電気の通しやすさが同じなら同じ像が得られます。

例えば専門的な話しですがSi(111)7*7表面はSTMもAFMもほぼ同じ像が得られています。SrTiO3という物質の表面では、表面に出ている酸素だけが電気を通しにくいので(だったかな?)その部分だけSTM像では暗くなるにも関わら...続きを読む

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

QXPS(ESCA):Ga2p1/2,3/2、この1/2,3/2とは?

こんにちは、XPSに関して質問があります。

pやd軌道からのピークになると、1/2,3/2といった
添え字がつき、ピークも比較的近接した二つに分離されています。
この1/2や、3/2って一体なんなのでしょう?
d軌道やf軌道になると、5/2,7/2といったふうに分子が
大きいものまであるようですが、どういう意味を持っている
のか分かりません。
電子のスピンと関係があるのでしょうか?
分からずに困っています。ご教授宜しくお願いします。

Aベストアンサー

#1ですが、まだ締め切られていないようなので。

スピン・軌道相互作用についてわかりやすく(というか古典的に)説明してみようと思います。(教科書に書いてあったのを引用するだけです。正確には相対論的量子論とかディラック方程式が必要になるようです。)

http://oshiete1.goo.ne.jp/kotaeru.php3?q=1735309
で薦めた「スピンはめぐる」という本にもたしか書いてありました。

まず軌道角運動量とスピン角運動量ですが、軌道角運動量は、その角運動量で電子は原子核の周りを回っていると例えられます。電子から見れば原子核が回っているように見えますが、ビオサバールの法則により磁場ができます。

一方、スピン角運動量とは電子の自転の角運動量に例えられますが、電子というのは小さな磁石で、その磁場の向きを表します。

原子核が作った磁場(実際には電子の軌道角運動量による磁場)に対して、電子のスピンによる磁場がどちらを向くかでエネルギーが変わってくるので、そのエネルギーがスピン・軌道相互作用です。

一応ウィキペディアのURLも書いておきます。

それから、、、
> 平行と反並行で、反並行の状態が結合としては安定なので、反並行のピーク位置は、高エネルギー側に現れる訳ですね。

これは厳密には誤りですね。例えばGa2p軌道の6つの電子のエネルギーはすべて縮退していて、平行も反平行もありません。そこから電子を1つ取り出すのに、取り出し方で取り出した後の終状態のエネルギーが変わってくるのです。ややこしいですが、、、

参考URL:http://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%94%E3%83%B3%E8%BB%8C%E9%81%93%E7%9B%B8%E4%BA%92%E4%BD%9C%E7%94%A8

#1ですが、まだ締め切られていないようなので。

スピン・軌道相互作用についてわかりやすく(というか古典的に)説明してみようと思います。(教科書に書いてあったのを引用するだけです。正確には相対論的量子論とかディラック方程式が必要になるようです。)

http://oshiete1.goo.ne.jp/kotaeru.php3?q=1735309
で薦めた「スピンはめぐる」という本にもたしか書いてありました。

まず軌道角運動量とスピン角運動量ですが、軌道角運動量は、その角運動量で電子は原子核の周りを回っていると例えられま...続きを読む

Q六方晶における格子面を(0001)と4桁で

3次元結晶の場合、格子の面や格子ベクトルは
3つの数字の組(001)などで確か全て表せます。

六方晶でも3つの数字の組で表せるのですが、4つの数字の組で表した方が理解しやすいので、この記法が使われることがあります。

4つの数字と3つの数字の関係はどうなりますか?
4つの数字には別の拘束条件がありそうですが、
いかがでしょうか?

このことについて書いてあるwebとか本をご存知ないですか? ちょっと探したけれど見つからなかったので。

よろしくお願いいたします。

Aベストアンサー

六方結晶の場合は(0001)というような表し方ですね。いわゆるc軸が4桁目になります。(h,k,l,m)の場合、h + k = -l の関係があります。

参考URLに出典例を書きましたが、"ミラー指数" "0001"で検索すると、関連ページが56件ありました。

参考URL:http://www.f-denshi.com/000okite/300crstl/304cry.html


人気Q&Aランキング