A 回答 (8件)
- 最新から表示
- 回答順に表示
No.8
- 回答日時:
>この中から無作為に13枚選んで、同じ数字のカードが4枚含まれている可能性はどれくらいですか?
包除原理を使って、同じ数字のカードが4枚含まれれることがないような
確率を求める。そしてそれを 1 から引く。
計算式と答えは、
1-(Σ[k=0~3]{(-1)^k*comb(52-4k,13-4k)*comb(13,k)})/comb(52,13)
=1357355571/39688347475.
No.7
- 回答日時:
#5です。
これを考える時にベン図を使って見ましょう。URLを見てみてください。
中学生の時に習ったと思いますが、集合が2つの時や
3つの時は丸の中身を足してから共通部分を計算する
方法ができますが集合が13ある場合はベン図を書くだけでも
大変で、足してから後で引くより一つ一つの
部品で大きさを出して後で足す方が簡単です。
丸が3つ(A,B,C)がある集合のベン図で考えると
とりあえずイチョウ型の部分の大きさを求めて
3倍して次に砲弾型の部分の面積を求めて3倍して
最後に三角形部分の面積を足せば全体の面積になることが
わかります。
今、丸い円の大きさが48C9です。(仮にAとしておきます)
次に円盤型の部分の大きさが45C5となります。(B)
最後に膨らんだ三角部分が40C1ですね。(C)
ところで丸い円の周りには12個の円があって
その中には11個の三角形があることになります。
円の中で見るとこの三角形は12C2個あります。
ということで13倍する前にこれらを引くと
A-12(B-11C)-12C2*C
円盤(三角形を引いたので砲弾形)は全体で13C2あります。
これをかける前に三角部分を引いておく必要があります。
相変わらず一つの円盤には三角形が11個ありますので
B-11C
に13C2をかけて砲弾形の大きさは
13C2(B-11C)
最後にCを足せばいいです。ただし全体には13C3個あります。
全体を通すと
13{A-12(B-11C)-12C2*C}+13C2(B-11C)+13C3*C
となります。って先の回答、少し間違ってますね。
13*{48C9-12*(44C5-11*40C1)-12C2*40C1}+13C2*(44C5-11*40C1)+13C3*40C1
が正しいですね。3.42%は変わりませんが。。。
ところで4人の内誰かがフォーカードを持つ確率ですが
これまた正確ではないものの一人がフォーカードと
ならない確率0.9658を4乗して1から引いた方がより
真の値に近いように思います。(それぞれは独立していませんので
これも本当は正しくありません)
1-(1-0.0342)^4≒0.1299
13%ぐらいですね。
参考URL:http://www.nikonet.or.jp/spring/sanae/MathTopic/ …
No.6
- 回答日時:
自分なりに計算しました。
全ての組合わせ 52C13 (Excelでは Combin(52,13)です。
→635,013,559,600通り
次にエース 4枚の組合わせ
1通りx1通りx1通りx1通りx(残り48枚の中から9枚選ぶ)
→Combin(48,9)=1,677,106,640 通り
同様に2 4枚の場合 1,677,106,640 通り以下同様に
13までを考えると 1,677,106,640 x 13通り→21,802,386,320通り
で互いにれぞれ背反である
よって確率は約3.43%となりました。
私も#2の方の計算の反証を30分ほど考えましたが
最初の4枚で不成立であっても、5枚目移行で成立する場合が
あると気が付きました。それはこの52/52 × 3/51 × 2/50 × 1/49
の確率以外の場合です。
No.5
- 回答日時:
ほぼ#3さんの回答でいいのですが、あるカードが4枚集まる場合の数を
計算して13倍すると2組のフォーカードがある場合の数、3組のフォーカードが
ある場合の数をそれぞれ2回、3回と別々に数えてしまいます。
つまり
A,A,A,A,2,2,2,2,4,5,6,7,8
という組み合わせは実際は1通りであるにも関わらずAでも2でも
数えられて2通りとして計算されてしまいます。
よってその分の調整をする必要があります。
(結果としては誤差程度の小さい差になると思いますが)
52枚のカードから13枚選ぶ場合の数(A)
A=52C13 ただし nCr=n!/(n-r)!r!
少なくとも1組のフォーカードが含まれる場合の数
13*{48C9-12*(44C5-11*40C1)}+13C2*(44C5-11*40C1)+13C3*40C1
=13*48C9-13C2*44C5+4*13C3*40C1
確率としては
(13*48C9-13C2*44C5+4*13C3*40C1)/52C13≒0.0342
3.42%程度です。
なお、この計算は質問者さん一人にフォーカードがくる確率となります。
>下の二方の解答でも納得できちゃいます。
>どうにかならないでしょうか?
他の方の回答に対して色々書くのはマナー違反とは思うのですが。。。
#1さんの方法はサイコロなど何度出ても確率が変わらない場合に
使います。ところがカードを配る場合には一度ある数字がでて
しまうと残りは3枚になり確率が変化していきます。
#2さんの場合は最初に出た数字が4枚引いた時点で揃っている
確率です。第一に13枚引く間に出揃えばいいですし、
4枚揃う数字が一番最初に出てくる必要もありません。
その補正として13C4/20825 とすると#3さんと同じ結果になります。
なお、一人に来る確率に対して4をかけて誰か一人に来る
確率にはなりません。(大体の予想にはなると思いますが
真の値より大きな結果になります)
その場合は誰にもフォーカードが来ない確率を求めて
1から引く必要があります。
ご解答ありがとうございました。
けれども
>少なくとも1組のフォーカードが含まれる場合の数
13*{48C9-12*(44C5-11*40C1)}+13C2*(44C5-11*40C1)+13C3*40C1
=13*48C9-13C2*44C5+4*13C3*40C1
この式になぜなるのかがよく分からないので、
説明していただけるとありがたいです。
No.4
- 回答日時:
こんにちは。
考え方が正しいのはNo.3の方でしょうかね。
ただし、その計算は「自分が革命を起こせる(同じ数のカードを4枚持つ)確率」と思います。もし、4人の誰かが起こせる確立ならその4倍になるのではないでしょうか。13.7%で、約7回に1度かな。
質問者さんが悩んでいるようなので、他の解答のおかしい点を指摘しますと…
No.1さんですが、単純に4枚のカードを4人に配るという着眼点はシンプルでしたが、、あるカードが配られた人に同じ数字のカードを再度配られる確率はその分低くなります。1枚目は誰でも確率は同じ1/4ですが、2枚目以降は既にカードを配られた人の受け皿は12枚分、11枚分と減ります。もらっていない人は13枚分のままですので、計算は(1/4)*(12/51)*(11/50)*(10/49)が妥当でしょうか。それを4倍と13倍すると上で書いた正しい答え(13.7%)になりそうです。
No.2さんですが、式を見ますと、「(13枚配るが)最初に配られた4枚が同じ数」という計算式のように思います。5枚目以降13枚目まで配る部分は計算に関係ないので、約分されてしまっています。実際に「4枚配って4枚が同じ数」の確率を出す式は、1*(3/51)*(2/50)*(1/49)=1/20825、これが4人分で0.02%になっています。
ただし、正解とした答えや計算も近似的なものになります。
それは、2人以上が同時に革命を起こせるケースや、一人で2組以上の4枚揃いを持っているケースなどを考慮せず、別のケースとして重複して数えているからす。
ただし、これらのケースは1人が1組だけ4枚揃っている場合に比べて、それなりに確率が低くなると予想できますので、「厳密にいえば間違いだがだいたいの確率としては先の計算の数値でもよい」としても問題ないかなと思います。
No.3
- 回答日時:
0.034333733493397358943577430972389
と出ました。
まず52枚から13枚を選ぶ場合の数ですが、これは
52*51*50*49*48*47*46*45*44*43*42*41*40を13の階乗で割って、
635013559600となります。…(1)
次に、仮に「A」4枚を必ず選ぶとして、残りの9枚を選ぶ方法は、
48*47*46*45*44*43*42*41*40を9の階乗で割って、
1677106640…(2)
実際には同じ4枚というのは「A」でなくてもよく、残る2~Kいずれ
でもよいので(2)を13倍すると、「同じ数字札4枚を選び残り9枚は
なんでもよいという場合の数」がでてきます。
これを(1)すなわち全体の数で割ると、冒頭の数字となります。
30回に1回、ですか。感覚的にはなんとなく合ってそうなのですが、
私は数学の専門家でもなんでもないので、自信なしとします。
ご解答ありがとうございました。
僕もこのような解答が出てきたのですが、
ほかの解答を否定することが出来ません。
下の二方の解答でも納得できちゃいます。
どうにかならないでしょうか?
No.2
- 回答日時:
大富豪のルールがわからないのすが、
>無作為に13枚選んで、同じ数字のカードが4枚含まれている可能性
「同じ数字4枚含まれている」が1組以上ある確立は
52/52 × 3/51 × 2/50 × 1/49 × (48!-39!)/(48!-39!)=312/6497400 =1/20825
式の説明としては
「まずどれでもいい×残りの同じ数字は3枚×残り2枚×残り1枚×あとはなんでもいい」です。
4人のうち誰かがこの条件を満たせばよいのであれば
1/20825 + 1/20825 + 1/20825 + 1/20825 = 4/20825(約0.02%)
ルールがわからないので感覚的には自信ないのですが…。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学の問題です 「ジョーカーを除く1組のトランプ52枚から1枚のカードを引くとき、次の確率を求めよ。 5 2022/04/06 18:18
- 数学 数学A、確率の問題です。 nを4以上の自然数とする。数字の1からnが書かれたカードが1枚ずつ、合計n 3 2023/07/02 22:54
- 数学 確率が(ある程度)強い人って 8 2022/10/21 01:36
- 高校 数学1 6 2022/07/02 10:54
- 統計学 確率の問題です。 7 2022/05/07 01:08
- 数学 数学A 確率 赤、青、黄、緑の4色のカードが5枚ずつあり、各色のカードに1から5までの数字が1つずつ 4 2023/04/21 10:06
- C言語・C++・C# カードシャッフルのブログラムを使ってc言語でブラックジャックをしたい 2 2022/04/12 15:13
- 数学 【大至急】確率の問題のやり方と解答を教えてください ①5枚のコインを同時に投げた時、表が出たのが3枚 4 2022/06/17 08:40
- 数学 『確率Ⅹ/2』 6 2022/11/21 00:00
- 数学 数学の課題です。 「2枚の硬貨を同時に投げるとき、表の出る確率は、2枚、1枚、0枚の3通りである。よ 6 2022/09/23 18:57
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
一番最初にネットにつないだのはいつ?
ネットユーザーもいろんな世代が生まれていますが、始めて接続したときのワクワクは同じはず! 人生で一番最初にネットに接続したときの思い出を教えて下さい。
-
2024年に成し遂げたこと
今年も残すところわずか。 皆さんが今年達成したことを教えていただきたいです。 どんな小さなものでも構いません。
-
食べられるかと思ったけど…ダメでした
「この煮物、だいぶ放置しちゃったけど大丈夫かな…」 「食べ物じゃないけど、なんか食べたらすごく美味しそうな気がする」
-
店員も客も斜め上を行くデパートの福袋
シュールを通り越して店員も客も斜め上を行くデパートの福袋に入ってそうなものを教えて下さい。 よかったらレビューもしてください。
-
大富豪においての革命の確率を教えてください
数学
-
トランプで同じ数字が4枚そろう確率
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
確率について
-
数学の質問です。 一枚の硬貨を...
-
6人でじゃんけんする時のあいこ...
-
統計学、順列・組み合わせの問...
-
確率0.02%って10000人に2人です...
-
確率の問題です。 全5種類ある...
-
30%の確率が5回連続で起きない...
-
帰りの高速バスで 隣に座った男...
-
確率
-
確率の問題です
-
確率の問題で困ってます。
-
確率の考え方
-
五分を6回連続で外すのはなん...
-
0.222%の確率で手に入るものを1...
-
数学Aについてです。 箱の中に...
-
ビンゴの確率計算
-
一般常識を教えてください。1割...
-
ジョーカーを含まない52枚のト...
-
【大至急】確率の問題のやり方...
-
「○○通りのパターンがある」の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
一般常識を教えてください。1割...
-
数学の質問です。 一枚の硬貨を...
-
ビンゴの確率計算
-
30%の確率が5回連続で起きない...
-
確率0.02%って10000人に2人です...
-
五分を6回連続で外すのはなん...
-
統計学、順列・組み合わせの問...
-
反応速度や濃度は、大きいor小...
-
1個のサイコロを3回投げる時、...
-
0.222%の確率で手に入るものを1...
-
「○○通りのパターンがある」の...
-
3×3のビンゴにおける確率計算。
-
5×5マス ビンゴの期待値?
-
確率
-
2択問題の正解確率について
-
凄い確率で書かれてませんか? ...
-
確率の問題です。 全5種類ある...
-
確率の問題で困ってます。
-
コインを6回投げたとき4回以上...
-
数学A 1枚のコインを8回投げる...
おすすめ情報