ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

論文を読んでて出てきたChiropticalという単語なんですが、辞書等を調べても載っておらず困っています。
接頭語のChiro-というのが『キラルな』という意味と言うのが分かったのでchiroptical propertyをキラルな光学特性を訳してみたのですが、内容がいまいちよく分かりません。
どなたか教えて頂けませんか?宜しくお願いいたします。

A 回答 (2件)

専門外ですが、単なる言葉に対する興味として、調べたところ


下記のように定義されていました。これでよくお分かりと思います。

chiroptic/chiroptical の定義:

A term referring to the optical techniques (using refraction, absorption or emission of anisotropic radiation) for investigating chiral substances [e.g. measurements of optical rotation at a fixed wavelength, optical rotatory dispersion (ORD), circular dichroism (CD), and circular polarization of luminescence (CPL)].
1996, 68, 2203

参考URL:http://www.iupac.org/goldbook/C01064.pdf
    • good
    • 0
この回答へのお礼

あれっ……お礼文書いたはずなのに出来てなかったみたいです。スイマセンm(_ _)m
調べて頂いて、どうもありがとうございました。

お礼日時:2006/11/27 16:26

不斉chiral+光学的opticalの組み合わせで、偏光、円二色性(CD)などのキラルな物質についてまわる光学的性質全般を言う言葉では。


キラルな光学特性、という言葉の中には、いろいろな物性がありますよね。
それらを総合的に呼ぶものだと思います。
    • good
    • 0
この回答へのお礼

やはりそういうことなんですかね?
化合物に4箇所キラリティがあるので、その化合物の様々な光学特性ってことで考えてみます。
ありがとうございました。

お礼日時:2006/11/25 23:51

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q共役の長大=長波長シフト?

芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。
π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。
なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

Aベストアンサー

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系の4つの原子の、π結合にあずかる4つのp軌道について、
それぞれ2個同士で軌道の重なりを考えます;


↑        ─ πab*           ─ πcd*
|      /   \           /   \  
|     /      \        /      \  
┼ 2p─          ─2p 2p─          ─2p
|     \      /        \      /
|      \   /           \   /
|         ─ πab           ─ πcd

   Ca         Cb    Cc         Cd
 (Ca~Cdはそれぞれ炭素原子、πab・πab*はそれぞれCa・Cbのp軌道の
  重なりで生じた結合性軌道・反結合性軌道。πcd・πcd*も同様)

次に、このπab・πab*とπcd・πcd*との間の軌道の重なりを考えます。
このとき、先程のp軌道同士の場合に比べると、軌道の重なりは小さいため、
エネルギー準位の分裂幅も小さくなります(因みに、重なり0→分裂幅0);

                 _π4
E            /       \
↑  πab* ─                ─ πcd*
|           \       /
|                ̄π3

|               _π2
|           /       \
|   πab ─               ─ πcd
|           \       /
                  ̄π1
   Ca         Cb    Cc         Cd

 (元のp軌道は省略、そのエネルギー準位は左端の『┼』で表示)


この結果、Ca~Cdの炭素上にπ1~π4の4つの軌道ができます。
元のp軌道よりエネルギー準位の低いπ1・π2が結合性軌道(π2がHOMO)、
高いπ3・π4が反結合性軌道(π3がLUMO)になります。
(軌道が重なると、「重なる前より安定な軌道」と「重なる前より不安定な軌道」が
 生じますが、このように、必ずしもそれが「結合性軌道と反結合性軌道となる」
 とは限りません;その前に大きな安定化を受けていれば、多少不安定化しても
 結合性軌道のまま、と)

このように考えれば、それぞれのHOMOとLUMOのエネルギー差は、CaとCbの2つの
π電子系で生じた時に比べ、Ca~Cdの4つのπ電子系の方が小さくなることが
理解していただけるのではないかと思います。


<余談>
このようにして共役系が延長していくと、軌道の重なりによる安定化幅はさらに小さく
なっていくため、「軌道」というよりは「電子帯(バンド)」というべきものになります。
また、HOMO-LUMO間のエネルギー差も縮小し、常温で励起が起こるようになります。
これによって、芳香族ポリマーや黒鉛などは電導性が生じているわけです。

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系...続きを読む

Qセライトろ過について

 セライトろ過をすると抽出効率があがる。エマルジョンが解消される。また、清濁なろ液が得られるという原理がよく分かりません。
 1点目はあらかじめ試料にセライトを練りこむことで水分を保持し、分散されやすくなるためと言われているらしいのですが良く分かりません。
 3点目は固形物(汚物)をセライト粒子が多い尽くすため(ボディフード?)、ろ紙を通過しにくいということで清濁な液が得られるのでしょうか?
 wikipediaや本を参照にしてもよく分かりません。詳しい方ご教授をお願いします。また、ろ過について分かりやすい本があれば教えて下さい。

Aベストアンサー

セライト(珪藻土)の特徴を wikipedia でもう一度読み返してみてください。文が述べている事そのものではなく、自分が関心を持っている現象との関連を読み取ることが必要です。

端的に言えば、「吸着力は低く、溶液中に溶解している成分はそのまま通し、不溶物だけを捕捉する性質がある。」という部分がポイントになります。つまり、弱い吸着を生じるが不溶物を捕捉することは出来るということです。

実際に様々な実験系を経験すれば分かってくるかと思いますが、天然物を扱っていたり、反応がきれいに進行していない場合には、水にも有機溶媒にも溶け切らない成分が液中に混在することが珍しくありません。これをろ紙などで強引にろ過しようとすると、ろ紙が目詰まりして大変な時間が掛かったりします。このような場合にセライトろ過をすると、セライトが微細な不溶成分を捕らえ、この不溶成分による抽出不良を解消できます。

余談ですが、適度な吸着力を持たせるというのは、昔は化学の実験現場で当たり前に行なわれていました。たとえば、ジョーンズ酸化でクロム酸の後処理を容易にするために、セライトとフロリジルを等量混合して反応系に加えるなんていうことを学生時代に教わったこともあります。

セライト(珪藻土)の特徴を wikipedia でもう一度読み返してみてください。文が述べている事そのものではなく、自分が関心を持っている現象との関連を読み取ることが必要です。

端的に言えば、「吸着力は低く、溶液中に溶解している成分はそのまま通し、不溶物だけを捕捉する性質がある。」という部分がポイントになります。つまり、弱い吸着を生じるが不溶物を捕捉することは出来るということです。

実際に様々な実験系を経験すれば分かってくるかと思いますが、天然物を扱っていたり、反応がきれいに進行...続きを読む

Q量子収率とは???

量子収率という言葉はよく聞くのですが、いまいちよく分かりません。

どなたか分かりやすくご説明して頂けないでしょうか?

お願いします。

Aベストアンサー

量子収量の定義は「光化学反応において、吸収した光子に対する生成物の割合」です。例えば、反応物に光を照射し、そのうち1molの光子を吸収して0.5molの生成物を得た場合、量子収率は50%ということになります。光子のmol数は光強度、振動数、照射時間、プランク定数、アボガドロ数から計算されます。

Q転化率

転化率の定義を教えてください。

Aベストアンサー

styrenさん、こんばんは。

参考URLに、大変面白い例が載っていました。

「新入生100人(原料)が入学し、1年後に、卒業試験がある(反応器)。
 合格者は、卒業(生成物)。
 不合格者(未反応物)は、在籍する(リサイクルにまわされる)」

このとき、
 卒業試験の合格率=(1回転化率)

のようです。
このときの、反応器に入れられる量=原料+リサイクル

なので、合格率は、

(生成物)÷(原料+リサイクル)×100=1回転化率

のようにかけると思います。
ご参考になればうれしいです。

Q構造式から化合物名を教えてくれるソフトはありますか?

化学構造式からIUPAC名などの化合物名を付けるのにとても苦労しています。
構造式から化合物名を教えてくれるソフトやサイトがあれば是非教えて下さい。宜しくお願いします。

Aベストアンサー

No.1です。
ChemSketchは不評ですかね(笑)
個人的な意見としては、ChemDrawの命名に比べて、はるかによくできていると思います。無料版をお試し下さい。

当然のことながら、複雑な化合物に簡潔な慣用名がついていて、その誘導体として命名した方が良い場合もあり、そういったものに対してはあまり役に立ちませんね。もっとも、新規化合物に関しては、Chemical Abstractsもあまり役に立ちそうもありませんが。
命名法の勉強をするなら下記の参考URLのサイトが良いですね。

参考URL:http://homepage1.nifty.com/nomenclator/

Q高分子のX線構造解析(SAXS,WAXS)

X線構造解析で小角と広角の構造解析についてですが、
なぜ、
小角散乱でラメラ構造などがわかり、
広角散乱でパッキング構造、結晶化度
が解析できるのでしょうか?
実際に装置を触ったことがなく、生データの見方もわかりません。わかりやすいホームページ、解説書など教えてください。

Aベストアンサー

高分子の構造解析は専門外ですが、通常の無機結晶のX線回折を使っている者です。
小角も広角も原理は同じです。有名なブラッグの関係式
2d・sinθ = n・λ
で解釈出来ます。ここで、dは調べようとする試料の結晶の面間隔、λは測定に使うX線の波長、θはX線回折測定結果で得られるピークの位置です。nは回折の次数ですが、とりあえずn=1の場合を考えましょう。
ただし、通常の粉末用装置では、横軸に回折角度としてデティクターのスキャン角度である2θを、縦軸に測定されたX線強度で測定結果を図示します。θではなくて、2θになっていることに注意してください。
ここで、ブラッグの式を見れば分かりますが、右辺は定数なので、θの大きいピークは、小さい面間隔のdからのものであることが理解出来るでしょう。
つまり、広角側で得られるピークは高分子の小さい面間隔に関する結晶の情報=分子のパッキング情報なわけです。一方、小角領域でのピークは、面間隔の広い結晶情報=ラメラ構造の面間隔の情報になるのです。
結晶化度に関しては、実は定量的に評価するのはけっこう難しいのですが、定性的な評価としては、ピーク強度が結晶化している体積を反映しており、ピークの幅がシャープなほど結晶のサイズが大きいor結晶の構造の乱れが少ないことを意味しています。
この評価は、原理的には小角でも広角でも同じなのですが、もう一度ブラッグの式に戻ってください。2d=n・λ/sinθと変形して両辺を微分します。すると、2Δd=-nλ・Δθ・cosθ/(sinθ)^2となります。
ここで、もう一度式を変形すると
2Δd・(sinθ)^2/(nλ・cosθ)=-Δθとなります。
ピークの幅とは右辺のΔθを意味しており、これは同じ結晶の乱れΔdに対して、θの小さい領域ではΔθがどんどんと小さくなることになります。つまり、小角領域では、結晶化度を評価するためのピーク幅が非常に小さいものとなり、測定装置自体の原因によるピークの幅より小さくなってしまい、実際には測定が不可能となります。従って、結晶化度の評価は主に広角で行うのです。また、結晶化度の意味からも、分子のパッキング面の完全度で評価する方が妥当ですし。

高分子の構造解析は専門外ですが、通常の無機結晶のX線回折を使っている者です。
小角も広角も原理は同じです。有名なブラッグの関係式
2d・sinθ = n・λ
で解釈出来ます。ここで、dは調べようとする試料の結晶の面間隔、λは測定に使うX線の波長、θはX線回折測定結果で得られるピークの位置です。nは回折の次数ですが、とりあえずn=1の場合を考えましょう。
ただし、通常の粉末用装置では、横軸に回折角度としてデティクターのスキャン角度である2θを、縦軸に測定されたX線強度で測定結果を図示します。...続きを読む

Q“ in situ ” とはどういう意味ですか

科学の雑誌等で、“ in situ ” という言葉を見ますが、これはどういう意味でしょうか。
辞書では、「本来の場所で」、「もとの位置に」などと意味が書いてありますが、その訳語を入れても意味が通りません。
分かりやすく意味を教えていただけないでしょうか。

Aベストアンサー

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対してプローブをhybridizationすることをさします。
これによって、染色体上で特定のDNA配列を検出したり、組織標本上で特定のRNAを発現する細胞を検出したりできます。生体内の局在を保った状態でターゲットを検出するということです。

化学反応、酵素反応などでは、溶液中の反応のように、すべての役者が自由に動き回れるような系ではなく、役者のうちどれかがマトリックスに固着していて、その表面だけで反応がおこるようなケースが思い浮かびます。

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対...続きを読む

Q蛍光スペクトル

蛍光スペクトルと励起スペクトルについて教えてください

励起光の波長を変化させて蛍光の波長を固定して測定したものが励起スペクトルで、励起光を固定して蛍光の波長を測定したものが蛍光スペクトルだというのはわかるのですが、2つがどういうものかということがよくわかりません。

教科書のスペクトルと見ると、横軸は波数で蛍光の波長だと、わかるのですが、励起光の波長はどこに表されているのでしょうか?

またどうして励起スペクトルと蛍光スペクトルが鏡像関係にあるのかもわかりません。

あまり難しい言葉や数式は使わずわかりやすく回答してもらえれば幸いです。

Aベストアンサー

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギーの低い状態へ移動する)を経て励起状態振動基底状態へ移動します。そして、図では緑の矢印で示されている蛍光が発光します。

質問者様のおっしゃる励起スペクトルはこの青色の矢印の波長を変えながら緑色の矢印すべてひっくるめた蛍光全体の強度を測ります。このとき、電子励起状態の振動基底状態や振動励起状態(図では太い横線が各電子状態の振動基底状態を示し、その上の細い横線がその電子状態の振動励起状態を示しています。)へ励起されますので、励起光の波長は電子励起状態の各振動状態のエネルギーに対応したものとなります。溶液などでは、振動励起状態へ励起してもすぐにその電子状態の振動基底状態へ緩和されますので、緑の矢印全体の強度というのは、励起された分子の数に比例します。つまり、励起スペクトルは分子の吸収スペクトルに比例したようなスペクトルが得られるわけです。(もちろん、いろいろ例外はありますが)

さて一方、質問者様のおっしゃる蛍光スペクトルは緑色の矢印をさらに分光器などで分散させて矢印一本一本を別々の波長として観測するスペクトルです。つまり、波長は電子励起状態の振動基底状態から電子基底状態の振動励起状態のエネルギーに対応したものとなります。

蛍光スペクトルにおいて、励起光の波長がわからないと言うことですが、溶液などでは励起分子はすぐに電子励起振動基底状態へ緩和しますので、励起光の波長を変えて励起する分子の振動状態を変えても、蛍光スペクトルはすべて電子励起振動基底状態からのもので、波長とその強度比は変わりません(励起スペクトルのように全体の強度はかわりますが)。このような場合、励起光の波長を書かないことが多いです。

図でもわかるように、励起光の波長と蛍光発光の波長はは電子励起振動基底状態のエネルギーをはさんで、励起光は電子励起状態の振動エネルギーだけ高いエネルギー(短い波長)になり蛍光は電子基底状態の振動エネルギーだけ引いエネルギー(長い波長)になり、それぞれの振動エネルギー構造が似ていれば、鏡像のような形になることがわかります。

以上、「励起光が書いていない」ということから類推して、すべて溶液の蛍光測定と仮定してお答えしました。気体や分子線を使ったLIFではちょっと話がかわってきますので、その点はご留意ください。

参考URL:http://www.jp.jobinyvon.horiba.com/product_j/spex/principle/index.htm#01

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギ...続きを読む

Q単結晶作成法で困ってます

はじめまして。
現在、X線構造解析用の単結晶(有機化合物)を作成しようとしているのですが、どうしても『ファイバー』のような細い針状結晶しか出来上がらず、困っています。

これまでに、様々な溶媒(クロロホルム、トルエン、酢酸エチル、ジオキサン、アセトニトリル、アセトン、エタノールなど)を試したり、また手法も溶媒をゆっくり蒸発させたり、貧溶媒(ヘキサン、エーテル、メタノールなど)の蒸気をゆっくり溶かしこんだりと、いろんな手法をとってきましたが、たいていはファイバー状になってしまいます。

化合物自体の溶解性は高いほうでして、水、ヘキサンには不溶、メタノール、エタノール、エーテル、アセトニトリルには少し溶け、他の溶媒には良好に溶ける感じです。しかしファイバー状のものができていることから、結晶成長時に自己組織化しやすい化合物のような印象を受けます。

このような化合物をブロック状の単結晶にすることはできるのでしょうか。あるいは、類似のケースにて溶媒を変えたら成功した、などの例をご存知の方はおりますでしょうか?

Aベストアンサー

結晶形は化合物に依存するので晶形を変えるのは難しいと思います。
針状結晶でも上手く育てればX線結晶構造解析に使えるサイズに出来ると思うので、ゆっくり出して大きくなるのを待つのが良いかなと。

参考までに私の知っている結晶の出し方を一つ挙げます。
モノに貧溶媒を少しずつ加え、ある程度加えて溶け切らなかったら、程ほどに溶ける良溶媒を少しずつ加え、完全に溶かす。
これを冷凍庫(-20℃)に入れ結晶が出るまで待つ。

基本的に少しだけ過飽和な状態でゆっくり時間をかけて出すのが良いはずです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング