質問投稿でgooポイントが当たるキャンペーン実施中!!>>

はじめまして

para-redは濃厚な溶液や固体では赤(黒)くみえる。しかしながら、希薄溶液(紫外吸収スペクトル測定時)では黄~オレンジ色に見える。この理由をスペクトルを元に説明せよ。

という問題なのですが…
黄色~オレンジ色に見えるのは、480nmの波長の光が吸収されて補色で、黄色~オレンジ色に見えるのかなと考えました。また赤く見えるのは、濃厚な溶液や固体では、物質がプリズムの役割としての光の吸収をしないから、、

と考えました。が、ぜんぜんわからないというのが本音です

よろしくお願いします

A 回答 (2件)

No.1です。



> 吸光度が大きい溶液になると、反射光の量が少ないため、人間の目には見えにくくなる

概ね、その理解でよいと思います。
(細かいことをいうと、今回の場合は「反射光」ではなく「透過光」になりますが)

> 本当は黄色とかのはずなのに、反射光の量が少ないために認識できずに黒っぽく見えてしまう

こちらは、正確には「本当は黄色のはず」ではなく、「黄色の透過光が多いはず」、もしくは「黄色み
を持つはず」ということになります。
(青色光以外にも吸収を持つので、厳密には「黄色のはず」とはいえない、と)


少し例を挙げて補足してみます(かえってわかりにくいかもしれませんが(汗));

1)



|/\____
└──────→
  B  G  R

2)

|──────


└──────→
  B  G  R

上記「1)」のような、青色光(B)に極大吸収を持つ溶液があった場合、この溶液は
黄色に見えます。
一方、「2)」のような溶液があった場合(例えば墨汁など;これだと厳密には「溶液」
ではありませんが)は、可視光全域に均等に吸収を持つため、黒に見えます。


ここで、2)の液に1)の溶質を混ぜることを想像して下さい。
(希釈が入ると話がややこしくなるので、「溶液」ではなく「溶質」)

このとき、3)のように青色光の吸収が増加します。
(実際には、このような単純な足し算になるわけではなく、吸収極大のピークは
 遙かに小さくなるのですが・・・;吸光度は通常、対数をとった形で表すので)
ですが、肉眼で見る限りは、元の「2)」と同じようにしか見えないでしょう。

3)
↑/\____



└──────→
  B  G  R

この例のように、全領域の吸光度がある程度以上になると、それぞれの波長での
吸光度の差は、肉眼ではわかりにくくなります。
(黒画用紙にマジックで文字を書いた場合を想像してもらってもいいかもしれません)
    • good
    • 1
この回答へのお礼

DexMachinaさん、ご丁寧に回答していただき
本当にどうもありがとうございました☆☆

お礼日時:2007/01/08 00:30

ポイントは、染料などの吸収スペクトルがブロード(広幅)であること、です。



「吸収極大」はあくまで「極大」であって、実際にはそれ以外の光も吸収します。
そのため、可視光全域に多少なりとも吸収がある染料なら、高濃度になると
黒っぽく見えることになります。
(吸光度がある程度大きくなると、各波長のバランスの崩れ(=色)は人の目では
 わかりにくくなり、「赤黒」「青黒」など、「黒っぽい色」と認識されるようになる)

従って、濃度が薄いときは黄色(薄いオレンジ)に見えるものは、濃度が上がる
につれて橙色から赤色に見えるようになり、さらにそれが濃くなると赤黒に
見えるようになる、ということです。

この回答への補足

DexMachinaさん回答ありがとうございます☆
>吸光度がある程度大きくなると、各波長のバランスの崩れ(=色)は人の目ではわかりにくくなり、「赤黒」「青黒」など、「黒っぽい色」と認識されるようになる
というのは、吸収されずに、補色として見える反射光が、吸光度が大きい溶液になると、反射光の量が少ないため、人間の目には見えにくくなるということですか…??
また反射光は一応、可視光の領域だから赤とかに見えるのでしょうか??それとも、本当は黄色とかのはずなのに、反射光の量が少ないために認識できずに黒っぽく見えてしまう…ということでしょうか…??

すみませんお時間ありましたらよろしくお願いします

補足日時:2007/01/07 09:24
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q色と波長の関係―吸光スペクトル

色は特定の波長を吸収して色を発するのですか?それとも、特定の色を吸収して色を発するのですか?
色と波長の関係で、波長が短いと紫に見えたりするのはなぜですか?波長が短いほうがエネルギーが強いのはなぜか教えてください☆

Aベストアンサー

> 波長が短いと紫に見えたりするのはなぜですか?

これは実は結構高度な質問です。「波長が短いと"青色"に見えたりするのはなぜですか?」というのは普通の質問で、No.2さんの回答で良いのですが、可視域で青色と感じられる波長域のうち、概略400nm近辺以下の短波長だけの光が目に入った場合、これは「緑の補色」としての「紫」や、「青と赤の合成色」としての「紫」ではなく、単色で「紫(菫色)」と認識されるものです。この色は身近には、虹の七色の最も短波長側の色で、「紫外線」の名前の元になっている波長域です。

私は一応、分光の専門家ですが、人間の色の知覚のメカニズムそのものは素人なので推測なのですが、人間の目の三色を識別する視細胞のうち、「赤」に対応するものが若干この波長にも感応してしまうのではないでしょうか?

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=1400477

Q吸収スペクトルによる色

KMnO4、メチルオレンジ、チモールフタレインを用いて透過率の実験を行いました。結果の整理として、この3物質の吸収される波長とその色、肉眼で見える色をまとめなければならないのですが、チモールフタレインの場合、340~400nmは吸光度が0.0462~0.06位になったので紫外線吸収のため無色透明、400~560nmはそれ以下の値になったため、光を吸収しないとみて無色透明と書きました。(判断の理由は、チモールフタレインの変色域が無色→赤のためです)メチルオレンジは340nmから吸光度が0.1となったので、紫外線吸収のため無色透明と書こうと思いましたが、メチルオレンジの変色域は黄→赤となるはずなので、おかしいなと思い、質問しにきました。0.1という、チモールフタレインの最大吸光度よりも大きな値になったのに、紫外線吸収で無色になるというのと、光が吸収されないので無色になるのと、何かどっちも違うみたいで、どう書いていいか分からず困っています。説明が下手ですみませんが、つまり私が聞きたいのは、メチルオレンジが透明となってよいのか(?)ということです。実際には~430nmまでの色はどうなるのか?ということです。メチルオレンジは黄→赤としかならないと学校で教わったため、無色透明になるというのがさっぱり…。無知ですみません。良かったら教えていただけるとうれしいです。

KMnO4、メチルオレンジ、チモールフタレインを用いて透過率の実験を行いました。結果の整理として、この3物質の吸収される波長とその色、肉眼で見える色をまとめなければならないのですが、チモールフタレインの場合、340~400nmは吸光度が0.0462~0.06位になったので紫外線吸収のため無色透明、400~560nmはそれ以下の値になったため、光を吸収しないとみて無色透明と書きました。(判断の理由は、チモールフタレインの変色域が無色→赤のためです)メチルオレンジは340nmから吸光度が0...続きを読む

Aベストアンサー

可視部の吸収スペクトルを測定してあるのなら、考えやすいです。吸収極大がどこにあるのか?と言うことが大事で、例えば400nm付近に吸収極大を持つレチナールという物質は、黄色く見えます。520nm付近に吸収極大を持つロドプシンは赤色、570nm付近に吸収極大を持つバクテリオロドプシンは紫色、600nmにシフトしたものは青色になります。なかなか、残りの色の混合を頭の中で混ぜ合わせるのは難しいので、実際体験して考える事が重要です。
 所で、メチルオレンジの吸収極大はどこにありましたか? 以前、学生実習でメチルオレンジのアルブミンへの吸着の実験をやった事がありますが、確か480-490nm近辺に吸収極大(ふたこぶだったかな?)があった記憶があります。つまり、青系の色を吸収して、赤、橙、黄色の波長の光の散乱が強く出て、全体として赤から橙系の色になったと理解していました。
 それぞれの物質の吸収スペクトルを眺めて、下記の考えてみてはどうですか?
http://www.ecosci.jp/comchem/o7_vis.html
に、吸収スペクトルと色の関係を考察したものがありますので、参考にしてはどうですか?

参考URL:http://contest2002.thinkquest.jp/tqj2002/50205/sence/supectrum.html

可視部の吸収スペクトルを測定してあるのなら、考えやすいです。吸収極大がどこにあるのか?と言うことが大事で、例えば400nm付近に吸収極大を持つレチナールという物質は、黄色く見えます。520nm付近に吸収極大を持つロドプシンは赤色、570nm付近に吸収極大を持つバクテリオロドプシンは紫色、600nmにシフトしたものは青色になります。なかなか、残りの色の混合を頭の中で混ぜ合わせるのは難しいので、実際体験して考える事が重要です。
 所で、メチルオレンジの吸収極大はどこにありましたか? 以前、学生実...続きを読む

Q検量線に吸収極大波長を用いるのはなぜですか?

Fe(II)イオンのo‐フェナントロリンキレート錯体の吸光度を測定し、横軸にFe(II)イオンの濃度、縦軸に吸光度をとって検量線を作成するという実験をおこないました。

この際、波長は吸収極大波長である510nmを用いたのですが、吸収極大波長を用いる理由は何でしょうか?

吸収極大波長以外の波長を用いると、何か不都合でも生じるのでしょうか?

お分かりの方がいらっしゃいましたら、ぜひ教えて下さい。

よろしくお願いいたします。

Aベストアンサー

まず、吸収極大波長を用いると感度が良くなります。よって、より低い濃度でも測定できます。
また、ノイズの影響を小さくする(SN比を大きくする)ことが出来ます。
あと、今回はおそらく関係ないかと思われますが、近い波長に吸収がさらにあると極大波長以外の場合、どちらの波長の吸光の影響が大きいか分からなくなります。


しかし、最大の原因は基本的に吸収極大波長で取るのが普通だからです。他で取ると、過去の知見を生かすことが出来ません。

QUV測定の波長と色の関係について

UV測定の原理は、紫外線領域のエネルギー強度の光が分子内のπ電子を励起するために起こる、と文献にありましが、いまいち意味がわかりません。分子に光を当てると、その分子が吸収した波長の光が最大吸収となって現れるのでしょうか。例えば、その分子の見た目が黄色なら、黄色の光を反射しているから黄色に見え、UV測定を行ったときは、その分子が一番よく吸収する黄色と反対(補色)の色である紫の領域の波長にピークが表せるのでしょうか。

Aベストアンサー

No.1です。
皆さんもご回答されていますが、問題点を少し整理してみましょう。
(1)物質の色について
可視領域の波長を吸収する物質は、その吸収波長の色の補色に見えます。紫の領域を吸収する物質は、黄色に見えます。可視光領域に吸収を持たない物質は、無色又は白色です。可視光を皆吸収する場合は、黒色です。
(2)可視紫外領域の吸収について
ではなぜ可視紫外領域の光吸収が起こるのか。これは、物質を構成している原子や分子の、電子のエネルギー状態の遷移によって生じます。
各々の電子の状態によって、吸収するエネルギーが決まっており、様々な物質を調べれば、可視紫外領域のいろんな波長の吸収が見られます。例えば、半導体のGaAsのバンドギャップ吸収は約870nm、GaNは約370nmです。錯イオンのMnO4^2-は、250~500nmに吸収があります。不純物や格子欠陥での吸収もあります。
また同一物質でも、複数の吸収を持つ場合もあります。何種類かの電子が励起されれば、複数の吸収が生じますし、ある基底状態から、複数の励起状態に励起可能な場合には、複数の吸収ピークを持ちます。

(3)有機分子の吸収について
可視および紫外領域の吸収は、π電子のエネルギー状態の遷移に起因しているようです。π電子をもたない有機分子は、可視紫外領域に吸収を持たないみたいです。

質問者さんは、有機分子の光吸収について勉強されているのでしょうか。
物に色がついて見えるということ、その原因となっている光吸収という現象には、いくつか種類があるということを、理解して頂けたでしょうか。
有機分子の色素なども、その一例です。
長くなりましたが、如何でしょうか。下記に、多少の記載があります。ご参考まで。

参考URL:http://www.tagen.tohoku.ac.jp/labo/arima/lecture/spectroscopy/pi_electron.html

No.1です。
皆さんもご回答されていますが、問題点を少し整理してみましょう。
(1)物質の色について
可視領域の波長を吸収する物質は、その吸収波長の色の補色に見えます。紫の領域を吸収する物質は、黄色に見えます。可視光領域に吸収を持たない物質は、無色又は白色です。可視光を皆吸収する場合は、黒色です。
(2)可視紫外領域の吸収について
ではなぜ可視紫外領域の光吸収が起こるのか。これは、物質を構成している原子や分子の、電子のエネルギー状態の遷移によって生じます。
各々の電子の状態によっ...続きを読む

Q検量線

検量線とはどういったものなのか?
検量線を引くとはどういったことをすればいいのかおしえてください。

Aベストアンサー

masazo27さんの2番煎じとなりますが、改めて説明を試みたいと思います。
検量線を引くとは、測定器の固有差を見極め、その固有差を見極めた上で、未知試料について正確な測定を行うことを目的にしています。
例えば、ある水溶液中の砂糖の濃度を知ることが目的であるとします。砂糖の濃度を知ることが目的の検量線とは、砂糖0.1g、0.2g、0.3gをそれぞれ1Lの水に溶かし(あらかじめ濃度が既知の試料を作成し)、それを測定器にかけ、測定器の指示値を記録します。それを、横軸を濃度、縦軸を指示値にとったグラフ用紙に記入し、直線なり曲線で結びます(直線か、曲線かは理論的なものに依存します)。こうしてできたラインが検量線です。この検量線により、測定器の実際の指示値から濃度を推定できるようになります。ただし、検量線は濃度0.1~0.3g/Lの間で作成したので、その検量線の有効性もその間と言わざるを得ません。検量線から推定して1.5g/Lとでた場合には、その値の信憑性は低いと言わざるを得ないでしょう。その際は、O,1.0,2.0g/Lの既知試料等で検量線を引き直す必要があると思います。

masazo27さんの2番煎じとなりますが、改めて説明を試みたいと思います。
検量線を引くとは、測定器の固有差を見極め、その固有差を見極めた上で、未知試料について正確な測定を行うことを目的にしています。
例えば、ある水溶液中の砂糖の濃度を知ることが目的であるとします。砂糖の濃度を知ることが目的の検量線とは、砂糖0.1g、0.2g、0.3gをそれぞれ1Lの水に溶かし(あらかじめ濃度が既知の試料を作成し)、それを測定器にかけ、測定器の指示値を記録します。それを、横軸を濃度、縦軸を指示値にとったグラ...続きを読む

Q分光光度計・吸光度とは?

ある液体の濃度測定をお願いしたところ、「分光光度計にて595nmにおける吸光度を測定する」と言われました。僕にはさっぱり意味が分からず、結果の数値を見ても人に説明できません。で、分光光度計とは?吸光度とは何でしょうか?何を測定したのでしょうか?まったくの無知なもので、よろしくお願いします。

Aベストアンサー

 分光光度計とは、光源から出た光を波長ごとに分ける部分(分光部)と、分けた光を試料に当てて光の弱くなる程度を測定する部分(光度計)からなります。
 試料に当てる光の強さをXとし、試料を通過した後の光の強さをYとすると、
 まず、透過率を求めます。透過率・・・T(%)=X/Y×100
 もっとも、普通に光度計で則って居する場合、純水などをいれた空セルで100%合わせをして、次にセル内を試料に入れ替えて測定するので、透過率は装置に表示され、計算する必要はありません。
 次に、この透過率から吸光度を求めます。
 吸光度=-log(T/100)
 なぜ吸光度を計算するかと言うと、溶液中の光を吸収する成分の濃度が吸光度と比例するからです。
 予め濃度の分かった標準試料を用いて、濃度と吸光度の関係を求めて「検量線」を作っておき、その他試料の吸光度を測定する事で濃度が求められます。

 測定する色調により波長は変わります。
 検量線作成に先立って、標準試料の場合の吸収スペクトル(広い波長範囲にわたり、波長と光の吸収度の関係をグラフ化したもの)を採り、測定上最適な波長を決めます。
 普通は、光の吸収の一番大きい波長を選びますが、その他条件も加味して決定する必要は有ります。
 595nmは可視光線のやや長目の波長です。

 なお、#2さんの提示されている「Lanbert-Beerの法則」(ランバート・ベールのほうそく)は基本的かつ重要で有名な法則です。

 P.S 吸光度の計算例
 透過率=85.3%だとすると、
 吸光度=-log(85.3/100)=0.069
 (昨今の分光光度計は吸光度も自動表示されるので、いちいち計算する必要は無いのですが、原理を知っている事は大切です)
 
 

 分光光度計とは、光源から出た光を波長ごとに分ける部分(分光部)と、分けた光を試料に当てて光の弱くなる程度を測定する部分(光度計)からなります。
 試料に当てる光の強さをXとし、試料を通過した後の光の強さをYとすると、
 まず、透過率を求めます。透過率・・・T(%)=X/Y×100
 もっとも、普通に光度計で則って居する場合、純水などをいれた空セルで100%合わせをして、次にセル内を試料に入れ替えて測定するので、透過率は装置に表示され、計算する必要はありません。
 次に、この...続きを読む

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Q吸光度と透過率

こんにちは。よろしくお願いします。

300nmの波長で、ある物質A、B、Cについて吸光度を測定しました。30分後、60分後、90分後と測定しグラフを書きました。

これを、もし透過率で測定したとしたら、値が逆になる(吸光度が高い部分が透過率が低くなる)だけで、
グラフの傾きは同じになりますか?

それとも、グラフの傾向が全く変わってしまいますか?

Aベストアンサー

Windows 標準装備の電卓(アクセサリの中にある)は,関数電卓モードがあります.表示>関数電卓
Google の検索窓に計算したい式を入れれば,計算結果が得られます.たとえばlog(2)と入れれば
log(2) = 0.301029996
と返ってきます.
http://www.google.co.jp/intl/ja/help/features.html#calculator

Q金属錯体の特有の色について

二価の銅イオンを含む水溶液は、青色を呈するのに、どうして一価の銅イオンを含む水溶液は無色なのですか?ナトリウムイオン、カリウムイオンも水溶液中では無色である理由も気になります。イオンの電子配置と何か関係があるのでしょうか?

Aベストアンサー

honeyBさんがどの程度の基礎知識をお持ちか分かりませんが,とりあえず非常に簡単なところから述べさせていただきます。

地面に落ちているボールを拾い上げると,ボールは位置エネルギーを受け取ってエネルギーの高い状態,つまり落ちる危険性のある状態になります。分子に光を当てると,分子は光のエネルギーを受け取ってエネルギーの高い状態になります。この分子の初めの状態を「基底状態」,エネルギーの高い状態を「励起状態」と言います。

この両者には決定的な違いがありまして,ボールの位置エネルギーは連続的な値を取れますが,つまりボールは好きな高さまで連続的に持ち上げることができますが,分子の励起エネルギーは飛び飛びの値しかとれません。よって,分子が吸収できる光のエネルギーも,飛び飛びの値しかとれません。分子が吸収する光のエネルギーと光の振動数との関係は,E=hνという式によって表されますので,分子が吸収する光の振動数も飛び飛びの値をとります。このことが,分子が色を持つ根本的な原因になっています。

分子が色を持つには,分子が可視光に相当する振動数の光を吸収する必要がありますが,これに相当する励起エネルギーは分子内の電子遷移に対応します。そして,電子遷移には大雑把にπ-π*遷移,n-π*遷移,d-d遷移,CT遷移などの種類がありますので,分子の色を説明するにはこれらの電子遷移の有無,および分子軌道の対称性(対称性によって電子遷移の許容・禁制が決まる)を考えれば良いということになります。

錯体の色については,配位子が単純である場合はd-d遷移,CT遷移のみを考えれば説明が付きます。この中で,d-d遷移は禁制遷移,CT遷移は許容遷移であるため,モル吸光係数が1000 cm2/mmol程度の錯体はd-d遷移による呈色のみであると考えることができます。

ここでご質問の件ですが,Cu2+は最外殻の3d軌道に電子が9個入ったd9錯体ですので,八面体構造の場合は3d軌道内(より具体的には3d_xy→3d_z2)でd-d遷移が起こります。そして,このd-d遷移が原因でCu2+の錯体はブルーに呈色します。一方,Cu+はd10錯体ですので,完全に閉殻構造となりd-d遷移は起こりません。単純な配位子では他の電子遷移も起こりませんので,Cu+の錯体は大抵無色になります。K+もNa+も同様に閉殻構造ですので,やはり無色です。

最後に。電子軌道と不連続なエネルギーについては物理化学(量子力学)の成書を,錯体の色に関する理論(配位子場理論,ヤーンテラー効果)については無機化学(錯体化学もしくは配位化学)の成書をご覧になれば,より一層理解が深まると思います。

honeyBさんがどの程度の基礎知識をお持ちか分かりませんが,とりあえず非常に簡単なところから述べさせていただきます。

地面に落ちているボールを拾い上げると,ボールは位置エネルギーを受け取ってエネルギーの高い状態,つまり落ちる危険性のある状態になります。分子に光を当てると,分子は光のエネルギーを受け取ってエネルギーの高い状態になります。この分子の初めの状態を「基底状態」,エネルギーの高い状態を「励起状態」と言います。

この両者には決定的な違いがありまして,ボールの位置エネル...続きを読む

Q極大吸収のモル吸光定数を求めたいです

分子量692の化合物50μgをメタノール10mlに溶解し
(↑7.22543×10^-6mol/Lでした)

光路長5センチのセルで紫外可視吸収スペクトル測定したら、

272nmに吸光ト度0.933の極大吸収が観測された。
この極大吸収のモル吸光定数を求めなさい。
(回答は常用対数で示せ)

という問題があって
私はこおゆう問題を初めて解くのですが自分なりにやってみたら

ε(max)=0.933/(7.22543×10^-6mol/L×272×10^-7センチ)=4747325846

ってすごく大きい数字になったし、
セルの層長5センチを計算に使ってないし、

パニックです。

アドバイスお願いいたします♪

Aベストアンサー

 No.1です。風呂に入っていたら、No.2さんがご回答してくださっていました。

>5センチに変えて計算したら、25825.4526になりました…
>なんか数大きいので不安です。

 計算結果には自信を持ちましょう。
 ところで、このような物理量の計算の時には、単位も忘れずに書いてください。「物理量=数値×単位」という自然法則があって、書くときには数値と単位の間に一文字分のスペース(空白)をあけて書く決まりになっています。
 No.2さんが書いてくれていますが、Lambert-Beerの法則(ランバート-ベールと読んだりランベルト-ベールと読んだりします)は、次のように書けます。
A = εcl
 A…吸光度。A = -log (I/I0) = log (I0/I)
 ε…モル吸光係数(質問文では「定数」と書いているものです)
 c…モル濃度。
 l…光路長。質問文の「層長」、No.2さんの厚さdと同じです。

 この問題の場合、εを求めるので、ε = …の形にして、各量の値を代入します。
ε = A/cl
 = 0.933/(7.225×10^(-6) mol・L^(-1)×5 cm)
 ≒ 2.58×10^4 mol^(-1)・L・cm^(-1)
ですね。 色素の極大吸収波長でのモル吸光係数の値は、10^4~10^5 mol^(-1)・L・cm^(-1)程度になりますので、妥当な値です。

>私は層長5センチのとこを波長で計算していたということですか?

 その通りです。上の式をしっかり理解して覚えてください。

 No.1です。風呂に入っていたら、No.2さんがご回答してくださっていました。

>5センチに変えて計算したら、25825.4526になりました…
>なんか数大きいので不安です。

 計算結果には自信を持ちましょう。
 ところで、このような物理量の計算の時には、単位も忘れずに書いてください。「物理量=数値×単位」という自然法則があって、書くときには数値と単位の間に一文字分のスペース(空白)をあけて書く決まりになっています。
 No.2さんが書いてくれていますが、Lambert-Beerの法則(ランバ...続きを読む


人気Q&Aランキング