はじめての親子ハイキングに挑戦!! >>

この積分はどうやって計算すればいいのでしょうか。

数学の問題集の練習問題にあるため略解答しかないため変形の意味が解りませんでした。
x^2+x-1は部分分数にも分解できないし、(x+1/2)^2+3/4と変形してtanの公式に適用しようとしてみたのですが解答のようには変形できませんでした。

ちなみに解答は
∫1/(x^2+x-1)dx
の変形がいきなり1/√5log|2x-(√5-1)/2x+(√5+1)|となっていました。

わかる方いらっしゃいましたらお願いします。

A 回答 (2件)

>x^2+x-1は部分分数にも分解できないし


解の公式を使えば因数分解できるので、
部分分数展開してください。
    • good
    • 7
この回答へのお礼

ありがとうございます。解けました。
解の公式は思いつかなかったので助かりました。

お礼日時:2007/08/07 00:49

x^2+x-1は変形すると、(x+1/2)^2-5/4ですよ。


x+1/2=√5/2sinθとしてやればできるはずです。
    • good
    • 6

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q∫1/x√(x^2+1) の積分について。

∫1/x√x^2+1を積分しろ
という問題があるのですが、解答をみると
√(x^2+1)=t-x
と、置き換えて積分していくのですが、僕は
√(x^2+1)=t
とおいて積分したのですが、これでは出来ないのでしょうか?
一応これでも計算はできた(つもり?)のですが、解答と答えが違っていたのでどこかで、ミス(思い違い?してはいけないことをした?)があったのかと思うのですが…。

答えは
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|
です。
僕の置換の方法でやると、
1/2log|√(x^2+1)-1/√(x^2+1)+1|
です。

Aベストアンサー

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^2+1))]|
=Log―――――――――――――――――――――――――
              |(x+1)^2-(x^2+1)|


     |x^2-(1-√(x^2+1))^2|
=Log―――――――――――――――
              |2x|


     |x^2-1+2√(x^2+1)-x^2-1|
=Log――――――――――――――――――
              |2x|


     -1+2√(x^2+1)-1
=Log――――――――――――
              |2x|


     √(x^2+1)-1
=Log―――――――――
        |x|


     [√(x^2+1)-1][√(x^2+1)+1]
=Log―――――――――――――――――
        |x[√(x^2+1)+1]|


         |x^2|
=Log――――――――――――
     |x[√(x^2+1)+1]|


           |x|
=Log――――――――――――
      √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
------------------------------------------------------------

1/2log|√(x^2+1)-1/√(x^2+1)+1|

   1        √(x^2+1)-1
 ――― ・ Log――――――――――――
   2        √(x^2+1)+1


   1        [√(x^2+1)-1][√(x^2+1)+1]
=――― ・ Log―――――――――――――――――
   2        [√(x^2+1)+1][√(x^2+1)+1]


   1            |x^2|
=――― ・ Log――――――――――――
   2        [√(x^2+1)+1]^2


            |x|
= Log――――――――――――
       √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
-----------------------------------------------------------

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q1 / (x^2+1)^(3/2)の積分について

1 / (x^2+1)^(3/2) の積分なのですが、これはどのように解いたら良いのでしょうか?
置換積分法で解こうとしても解けませんでしたし、部分積分法でもいまいち分かりませんでした。
ちなみに答えは x / (1 + x^2)^(1/2) + C となっていました。

どなたか解説よろしくお願いします。

Aベストアンサー

正攻法で、
x=tanTとおくと、
dx=[1+(tanT)^2]dT
dx=[1+x^2]dT

∫dT/√(1+tanT^2)・・・(-π/2<T<π/2)
=∫dTcosT
=sinT・・・(sinTとtanTの符号が一致しているのを確認して、)
=x/√(x^2+1)
こんな感じでしょうか。

Q(x^3/√(x^2+1))の不定積分

申し訳ありませんが、画像を作成しましたので参照して頂ければと思います。

(x^3/√(x^2+1)) の不定積分なのですが
このように式変形したあと、どのように積分し、答えにたどりつくのかがわかりません。

部分積分などで消えるのかとも試しましたが、うまくいきませんでした・・・

よろしくおねがいします。

Aベストアンサー

置換積分でできると思います。

∫(x^3/√(x^2+1))dx
=∫x√(x^2+1)dx-∫x/√(x^2+1)dx
ここで、x^2+1=tとおくと、2xdx=dtより、xdx=(1/2)dt
=(1/2)∫t^(1/2)dt-(1/2)∫t^(-1/2)dt
=(1/2)×(2/3)t^(3/2)-(1/2)×2t^(1/2)+C
=(1/3)t^(2/3)-t^(1/2)+C
=(1/3)(x^2+1)√(x^2+1)-√(x^2+1)+C
=(1/3)(x^2+1-3)√(x^2+1)+C
=(1/3)(x^2-2)√(x^2+1)+C

でどうでしょうか?確認してみて下さい。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Qある積分の問題。∫1/√(x^2+A) = log|x+√(x^2+A)|

ある演習問題で
∫1/√(x^2+A)
という形が出てきて、それが解けずに解答を見たら、
∫1/√(x^2+A) = log|x+√(x^2+A)|
という記述で、この積分の問題は済まされていました。逆算すると、確かにそうなるのですが、なかなかこの形を直接考え出すのは、難しい気がします。…ので、単純な暗記になると思うのですが、覚えにくい形ですよね…。
何か右辺を導き出すような考えの手順のようなものはあるでしょうか?

よろしくお願いします。

Aベストアンサー

高校範囲だと、#1の方のように、
t = x+√(x^2+A)
という置換を覚えるものです。

∫1/(1+x^2)dx という形をみたら、x=tan(t) と置く、ていうのと同じ感じで、
∫1/√(1+x^2)dx という形をみたら、t=x+√(1+x^2) と置くものなんです。
この積分は、けっこうよく出てくるので、覚えておいて損はないです。

大学生であれば、#2の方のように、x=sinh(t) と置換するってのが常道でしょうけど。


人気Q&Aランキング