
No.2ベストアンサー
- 回答日時:
平均と標準偏差が分かっている母集団から取ったひとつのサンプル(標本)の値xを
x = 平均 + (Zスコア)×(標準偏差)
の形で表すと、xが母集団全体の中での相対的な大きさとしてどのぐらいのモノであるかが分かり易い、というんで使われるのがZスコアです。だから、xがたまたま
x = 平均
である場合にはそのサンプルのZスコアは0、xがたまたま
x = 平均 + 標準偏差
である場合にはそのサンプルのZスコアは1、xがたまたま
x = 平均 - 標準偏差
である場合にはそのサンプルのZスコアは-1です。
ところで、「母集団の平均と標準偏差が分かっている」ということは実は滅多になくて、大抵は、母集団から取ったN個のサンプルの値を使って母集団の平均と標準偏差を推定するしかありません。この推定の際に、「値が分かっているのは与えられたN個のサンプルだけ、という条件の下では最も良い推定値(不偏推定)」を計算したい。
まず 「母集団の平均の推定値」は、
母集団の平均の推定値 = サンプルの平均値
とするのが不偏推定であることが証明されています。つまり、何度もサンプルを取り直して上記の式で推定値を計算し、「(真の)母集団の平均値」との違い(推定誤差)が幾らあるかを統計的に調べたとしたらどうなるかを考えると、「推定誤差の平均は0になる」ことが理論的に示せるのです。
しかし不偏推定による「母集団の標準偏差の推定値」は、「サンプルの標準偏差」とはちょっと違う。平方根の中の分母をサンプル数Nではなくて、N-1にするのが不偏推定であることが証明されています。
平方根の中の分子の部分で、平均値を引き算しています。この平均値がもし「(真の)母集団の平均値」であれば、分母はNで良いんです。ところが実際には、「母集団の平均の推定値」しか使えません。推定値に過ぎないのだから「(真の)母集団の平均値」から少しずれている。誤差があるのです。
そして、N個のサンプルを使って「母集団の標準偏差の推定値」を計算するために、同じN個のサンプルで推定した「母集団の平均の推定値」を引き算した場合、「母集団の平均の推定値」に含まれる誤差の影響が偏って現れます。この効果を補正するのが「分母はNじゃなくてN-1」なのです。というのは、
s = √(Σ((サンプルの値 - 母集団の平均値)^2)/N)
s' = √(Σ((サンプルの値 - サンプルの平均値)^2)/N)
とでは、平均値の部分が違うから答が一致しません。どのぐらい違うかはサンプルを取る際の偶然に左右される。けれども、(「(真の)母集団の平均値」が分かっている場合に)何度もサンプルを取り直してsとs'の計算をし、違いが幾らあるかを統計的に調べたとしたらどうなるかを考えると、「sとs'の違いは平均としてどれだけか」が理論的に予想でき、その予想とは「平均として、s'はsの√((N-1)/N)倍になる」というものです。なので、
s ≒ s'/√((N-1)/N)
によってsを推定すれば、不偏推定による「母集団の標準偏差の推定値」、つまり「値が分かっているのは与えられたN個のサンプルだけ、という条件の下では最も良い推定値(不偏推定)」が計算できる訳です。
ではなぜ、sとs'では後者の方がちょっとだけ小さく出るか。
(以下、フンイキ的な説明であり、厳密ではありませんが)例えば、(偶然の偏りによって)サンプルが母集団全体から一様には選べておらず、「(真の)母集団の平均値」に比べて大きめの値のものが若干多く含まれていたとしましょう。当然、サンプルの平均値は「(真の)母集団の平均値」よりもちょっと大きくなります。
ところで(母集団の平均値+サンプルの平均値)/2よりも大きいサンプルをひとつ選んで注目すると、
(サンプルの値 - 母集団の平均値)^2
よりも
(サンプルの値 - サンプルの平均値)^2
の方が小さい。
さて、大きめのサンプルが若干多く入っていると仮定したんですから、N個のサンプル中、「(母集団の平均値+サンプルの平均値)/2よりも大きいサンプル」の数は、そうでないものより若干多いでしょう。だから、s'はsよりちょっと小さい値になっちゃう。
小さめのサンプルが若干多く入っていると仮定した場合にも、同様に考えれば、s'の方がちょっと小さい値になっちゃうことが分かります。
この回答への補足
ありがとうございます。大変良く理解することができました。ところで、最後の「小さめのサンプルが若干多く入っていると仮定した場合にも、同様に考えれば、s'の方がちょっと小さい値になっちゃうことが分かります。」とありますが、ここが分かりません。この場合、サンプルの平均値は母集団の平均値より小さくなり、
(サンプルの値 - 母集団の平均値)^2<(サンプルの値 - サンプルの平均値)^2 となってしまうのですが・・・
お手数ですが、アドバイスいただければと思います。どうぞ宜しくお願い致します。
No.4
- 回答日時:
ANo.2のコメントについてはANo.3に適切なアドバイスが出ました。
> この場合、サンプルの平均値は母集団の平均値より小さくなり、
そーです。で、今度は小さめのサンプルひとつに着目するんです。すると、
(サンプルの値 - 母集団の平均値)^2 > (サンプルの値 - サンプルの平均値)^2
でしょ。そして、小さめのサンプルが若干多く入っているんだから、総和を取るとsはs'よりちょっと小さくなる。
No.1
- 回答日時:
「平均0, 標準偏差1」となるように正規化したのが z スコア.
標準偏差を求めるときに「測定数-1」で割っているのは, 「測定結果というのは, もっと大きな母集団の一部」と考えられるからです. 理論上は無限回測定でき, これが母集団です. 標本から母集団の不偏分散を求めるときには「測定数-1」で割りますよね.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 信頼区間についての質問です。 6 2023/06/25 17:34
- 統計学 確率統計の問題です。 4 2022/07/26 23:37
- 統計学 以下の問題が分からないので計算式を教えてください ある企業が製造している電球の寿命の母平均と,母標準 3 2023/01/14 00:43
- 統計学 生物統計学の質問 7 2022/05/17 13:59
- 統計学 3シグマ管理 10 2022/09/02 07:29
- 統計学 統計学についての質問です。 2標本問題で A: サイズ32 平均62.2 標準偏差11.0 B: サ 2 2023/02/08 14:15
- 統計学 化学 物理 電気 とある実験で求めた抵抗値の測定から求めた標準偏差(124)を利用して計算された平均 3 2023/06/25 20:34
- Excel(エクセル) エクセルまたはgnuplotグラフの書き方 2 2022/11/18 15:45
- 統計学 直線の傾き(回帰係数)から相関係数を計算できるのでしょうか? 2 2022/09/16 19:28
- 統計学 この問題の答えとやり方を教えてください、(分布表などは調べてほしいです、) 2 2022/07/02 12:43
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
統計学-母集団が少ない場合の...
-
t検定のt値について
-
標準体重の求め方
-
N数?n数?サンプル数の「エヌ...
-
ある試験の受験者全員の平均点...
-
評価者により採点に差が出るこ...
-
標準偏差
-
正規分布に従わないと標準偏差...
-
幾何標準偏差の求め方
-
最大な標本化間隔(ナイキスト間...
-
統計学でいうRSD%とは何ですか。
-
工程能力のN数補正について
-
なぜ共分散はSxyで表すのですか...
-
偏差値から順位を求めるには
-
統計学 標準偏差 マイナス範...
-
3者見積の異常値
-
エクセル STDEVとSTDEVPの違い
-
幾何正規分布を描くために、幾...
-
平均値と中庸値の違い
-
偏差値50~55の差と偏差値70~7...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報