
No.4
- 回答日時:
>> (x+y)(y+z)(z+x)+xyz
>> =(y+z){x^2+(y+z)x+yz}+xyz
>> =(y+z)x^2+{(y+z)^2+yz}x+yz(y+z)
あとは、たすきがけ(襷掛)で、
(y+z) yz ―― yz
\/
/\
1 (y+z) ――(y+z)^2
-----------------
{(y+z)^2+yz}
={(y+z)x+yz}{x+(y+z)}
=・・・
---------------------
あるいは、
(x+y)(y+z)(z+x)+xyz
=(x+y+z-z)(x+y+z-x)(x+y+z-y)+xyz
x+y+z=p と置いて、
=(p-z)(p-x)(p-y)+xyz
={(p^3)-(x+y+z)(p^2)+(xy+yz+zx)p-xyz}+xyz
=(p^3)-(x+y+z)(p^2)+(xy+yz+zx)p
=p{(p^2)-(x+y+z)p+(xy+yz+zx)}
=p{(p^2)-(p^2)+(xy+yz+zx)}
=p(xy+yz+zx)
=・・・
-----------------------
この回答へのお礼
お礼日時:2007/12/16 21:13
0lmn0lmn0さん
ありがとうございました!
すごくご丁寧に解説していただいて感謝です。
また、何かありましたらよろしくお願いいたします。
No.3
- 回答日時:
良い線いっていますね。
この変形でしたら、#1さんの言われるようにxについての2次方程式を「たすきがけ」で因数分解できます。
また、式変形を次のようにすると、(x+y+z) という共通因数が出てきますので、これでまとめることができます。
(x+y)(y+z)(z+x)+xyz
=(y+z){x^2+(y+z)x+yz}+xyz ←ここまでは一緒です。
=x(y+z){x+(y+z)}+yz{(y+z)+x}
={x(y+z)+yz}(x+y+z)
=(xy+yz+zx)(x+y+z)
この回答へのお礼
お礼日時:2007/12/16 21:11
Mr_Hollandさん
ありがとうございました☆
(x+y+z)でまとめてもできるのですね!!
すごく参考になります。
また、何かありましたらよろしくお願いいたします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数式で項のアルファベットの順...
-
ラグランジュの未定乗数を二つ...
-
x2+y2=(x+y)2-2xyこれはなんで...
-
数学についてです。 写真の問題...
-
因数分解
-
acrobat8(standard)で図形を書...
-
eの偏微分
-
高校数学 点(x+y,xy)の動く...
-
とても急いでいます!
-
x³+x³+1-3xyを因数分解せよ。 ...
-
因数分解
-
「x^2/36+y^2/64=1となるとき...
-
xy=0ならばx=0またはy=0 を証明...
-
高1 数II x+y+z=−1、xy+yz+zx+...
-
ド忘れしたんですけど、2分の1...
-
微小量とはいったいなんでしょ...
-
答えが2になる複雑な数式を探...
-
エクセルの式がわかる方がおら...
-
-0.1と-0.01ってどっちが大き...
-
2.5みたいな数字を分数になおす...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
acrobat8(standard)で図形を書...
-
絶対値の二乗の思考過程 |x-y|^2
-
xy=0ならばx=0またはy=0 を証明...
-
とても急いでいます!
-
数式で項のアルファベットの順...
-
x^3+y^3+z^3
-
画像の問題の解説のところで。 ...
-
x2+y2=(x+y)2-2xyこれはなんで...
-
x二乗-3xy+y二乗 この因数分解...
-
数学についてです。 写真の問題...
-
x³+x³+1-3xyを因数分解せよ。 ...
-
eの偏微分
-
【代数学】可換群の証明
-
数Ⅰ「xとyについて降べきの順に...
-
ラグランジュの未定乗数を二つ...
-
答えまでは悪いので途中式だけ...
-
〔2x+3y〕〔2x -5y〕の解き方...
-
高校数学 点(x+y,xy)の動く...
-
Q(x+y, x^2+y^2)の存在する範囲...
-
大学数学です!解析学なのです...
おすすめ情報