出産前後の痔にはご注意!

題名の通り、波数のイメージとその次元がどうも食い違ってしまうと言いますか、ちょっと納得できないので質問します。
波数の定義は、k=2π/λ(または、本によってはk=1/λ)で与えられています。ここで、私は波数は2πという単位の長さを波長で割っているのであるから、これは単位長さ当たりの波の数だと考えました。大学の先生に聞いてもあやふやな答しか返ってきませんでした。(大学の先生はいろんなこと知っているけど、あまり考えていないの?(疑))
その後、いろいろ調べて「波数は空間周波数とも言える。」と書いてあるのを見つけました。普通、周波数と聞けば、単位時間当たりに何回振動するかだけど、これは時間ではなく空間で与えているだけかと思って納得してしまったのです。
でも、それでは波数の次元は無次元になってないとおかしいではありませんか。
しかし、本で調べたところ、波数の次元はm^-1ではありませんか。
波長の次元はmとして、2πの次元は無次元でないといけません。では、これは角度でradなのでしょうか?
そうすると、先ほど納得したイメージではつじつまが合いません。2πを長さと考えてイメージを作ったのですから。
「波数を定義すると便利だから。」というのを聞いたことがあるのですが、波数のイメージはもてないのでしょうか?(波数っていうぐらいだから、波の数じゃないの?)

このQ&Aに関連する最新のQ&A

A 回答 (10件)

おっしゃるとおり波数のイメージは>単位長さあたりの波の数


でまったくOKです。
ですから次のように考えてはいかかでしょう?
10m中に波が5回あるとき波数を求めるには、5(無次元)÷10(m)ですね。
ちゃんと次元もm^-1となるのはすぐに納得されると思います。
この時、先に波長2mが分かっていたらこういう求め方もできます。
波長は波1回あたりの長さだから10(m)÷5(無次元)として求めますが、
この式は波数とちょうど逆数の関係にあるので、波数=1/2mと求められます
ここで注意していただきたいのは1mを2mで割っているのではなく、2m(波長)の逆数をとっているという点です。
波数の定義の式も2πmや1mを波長で割ったのではなく、波長の逆数に2πをかけたもの、波長の逆数そのもの、と捉えるのが正しいのです。

もうひとつ波動関数の式 y=Asin(wt-kx)との関係から捉えるのも重要です。
(y:変位,A:振幅,t:時間,x:基準点からの距離)
sin()の中は位相で角度(無次元)なのでw,kの次元はそれぞれt,xの次元の逆数とするのです。ここでkを波長λを用いて求めると2π/λ(rad/s)となります
波動の式としてy=sin2π(wt-kx)の形をもちいた時には2πが消えたk=1/λとなるわけです。
長くなりましたが少しでも直感的理解の助けになれば幸いです。
    • good
    • 9
この回答へのお礼

今回、最も”僕の”直感にあった説明でした。
本当にありがとうございます。
具体的な数字が出てくると、こんなことだったのかと思ってしまいました。
何か文字に置いて考える癖が付いてしまっていますが、具体的な数字で考えることも必要だと実感しました。

お礼日時:2002/11/27 21:36

ご質問や他の方の回答を再度拝見し、疑問の中味が分かったような気がするので、蛇足を追加します。



2πのことについてはsiegmundさんのお答えに詳しいので、2πなしの方で考えます。

orukaさんのおっしゃるように「1/λ」の意味を、「1m÷波長」のように捉えるのが誤りの元です。波長とは、波1個あたりが占める長さで、その次元はあえて言うなら「長さ/個数」です。この波長の単に逆数をとれば、直ちに、次元が「個数/長さ」の量、すなわち単位長さあたりの波の個数が求まります。基準の長さ(例えば1m)は、波長を表現する単位に既に入っているのであって、あらためて基準長さを決めてそれを波長で割るという操作は必要ない訳です。
    • good
    • 3
この回答へのお礼

再び回答ありがとうございます。
「そう考えればいいのか!」と思いました。
「個数は次元で無くとも、何か分かるように表記していただいた方が学ぶ人が分かり安いのでは?」・・・・ここで、そんなことを言っても意味ないですね。
僕の説明が悪かったようです。日本語を鍛えなければ。

お礼日時:2002/11/27 22:20

距離x[m]に波長λ[m]の波は、


 x[m]÷λ[m]=x/λ
だけありますから、単位距離当たりの波の個数は、
 x/λ÷x[m]=1/λ[m^(-1)]
になります。また、
 2π×(1/λ)[m^(-1)]=2π/λ[m^(-1)]
ですから、これは、単位距離当たりの位相の変化量を考えているわけです。

この回答への補足

2π×(単位長さ当たりの波の数)=(単位距離当たりの位相の変化量)
なぜ、2πをかけて、位相の変化量になるのか?
1波長で2π進むから、波の個数分だけ位相が進む(or戻る)と考えていいですね。
たぶん、そうなんでしょうが確認なので御回答よろしくお願いします。
後で見た方が分かりやすくしときたいもので。

補足日時:2002/11/27 22:09
    • good
    • 1

まず,ご自分でいろいろ調べられたり,考えられたりしている姿勢に敬意を表します.


短い間に多くの方々からの回答が寄せられたのも,
touch_me_8 さんの姿勢に皆さんが共感されたからだと思います.

さて,本題ですが,式を見る方がわかりやすいでしょう.
典型的な波は creol さんがお書きのように
(1)  U(x,t) = U0 sin(kx-ωt)
であらわされます.
簡単のため1次元にしてあります.
U(x,t) は場所 x ,時刻 t での変位,U0 が振幅です.
通常の名付け方は,k が波数, ωが角振動数です(後述).

まず,sin の中身は無次元である必要があります.
sin(z) のテーラー展開が
(2)  sin(z) = z - (1/3!)z^3 + (1/5!)z^5 - ...
ですから,z が無次元でないと次元の異なるものを加減することになってしまいます.
x を [m](メートル) 単位,t を [s](秒)単位で測ることにすると,
k は [1/m],ωは[1/s] という単位をそれぞれ持つことになります.

さて,時間を固定して(t=0 にしましょう),
(3)  U(x,0) = U0 sin(kx)
を考えましょう.
x を 0 から増やしてゆくと,
x:0 → (π/2)(1/k) → π(1/k) → (3π/2)(1/k) → (2π)(1/k)
につれて,kx は
kx:(π/2) → π → (3π/2) → 2π
と変化しますから,U(x,0) は
U(x,0): 0 → 1 → 0 → -1 → 0
となって,元に戻ります(1波長分動いた).
つまり,x の (2π)(1/k) [m] の幅の中に波がちょうど1個あるのです.
したがって,
(4)  λ= 2π/k  <=>  k = 2π/λ
のλが波長に他なりません.
別の言い方をすれば,x が 2π[m] の長さあたりの波の数が k 個です.
x の 1[m] (単位長さ)あたりではないことに注意してください.
2πが出てくるのは,上の説明からわかりますように,
sin(z) や cos(z) の周期が 2πであることに由来しています.

時間に関連するωの方も事情は全く同様で,
(5)  T = 2π/ω  <=>  ω= 2π/T
の T [s] が周期です.
ただし,名前の付け方は必ずしも統一されているわけではなくて,
ωは単に振動数(周波数)と呼ばれたり,角振動数(角周波数)と呼ばれたりします.
しばしば
(6)  f = 1/T = ω/2π
を単に振動数(周波数)と呼ぶこともあります.
f を用いるなら(1)の ωt の代わりに 2πft と書くことになります.
f とωの記号の使い方には混乱はないようです.

同じ理屈を空間変化の方にもいうのならば,
上の k は角波数とでも名付けられるべきなのでしょうが,
あまり見ません(何度か見たことはあります).
時間に関連する f と同様に k/2π を何か別の記号で書いてもいいわけですが
これもあまり見ません.

上でも述べましたが,2π は sin や cos の周期性に由来しています.
したがって,2πをどこに背負わすかで,多少表現が異なることになります.
Maxwell 方程式の係数が単位系による(SI 有理化単位系と cgs 非有理化単位系)
こととは直接関係はありません.
Maxwell 方程式とは関係のない音波などでも事情は同じで,
波動一般に共通する話です.

nycnyusa さんがX線回折について触れられていますが,
おっしゃるとおり実空間(x)と波数空間(k)とはフーリエ変換の関係にあります.
2度フーリエ変換をすると元に戻りますが,sin や cos の周期性の理由から,
因子 2π をどこかで処理しないといけません.
どっちか片方に全部背負わせてしまう方式と公平に分担する方式とがあります.

> 大学の先生に聞いてもあやふやな答しか返ってきませんでした。
>(大学の先生はいろんなこと知っているけど、あまり考えていないの?(疑))
こりゃ,耳が痛いですね~.
どういうことを専門にしている先生に聞いたんですか?
化学専門だったりすると(人とその人の専門分野によるけれど),
危ないかも知れません.
逆に,物理屋の私も大学1年くらいの化学のこと聞かれると,
お手上げのことも多いです.
物理系の先生だったら明解な回答が欲しいところですね.
もし,touch_me_8 さんが波動関係の講義を受けていてその先生に質問したのだったら,
明解な回答が帰ってこないのはちょっといただけませんね.

投稿しようと思ったら,同業者(?)の hagiwara_m さんのご回答が出ていました.
> かねてより、波数(英語でもwave number)という言葉が良くないと思っています。
> 「波の繰り返しの線密度」と理解する方がいいです。
> 波の空間パターンの込み合い具合を示す(連続)量です。
なるほど,「波の繰り返しの線密度」はそのとおりですね.
数(number)というと,なんとなく整数量をイメージしてしまう場合がある,
ということでしょうか.
レイノルズ数,なんてのもありますが...
    • good
    • 3
この回答へのお礼

今までの回答の補足など、詳しくありがとうございます。
>大学の先生はいろんなこと知っているけど、あまり考えていないの?(疑)
感情に任せて失礼なことを書いてしまいました。
一人の人を見て一般化するのも、いただけないと反省しています。
ちなみにそれを聞いたのはエックス線解析などを専門としている先生です。
でも、決して悪い先生ではありません。授業自体は大変分かりやすく、学内でも分かりやすさにかけては上位に入ると思います。
偶々だと思います。

お礼日時:2002/11/27 21:44

蛇足になるかも知れませんが、少し付け加えさせて頂きます。



かねてより、波数(英語でもwave number)という言葉が良くないと思っています。「波の繰り返しの線密度」と理解する方がいいです。波の空間パターンの込み合い具合を示す(連続)量です。

これを表わすには、ある基準長さに、何回(もちろん非整数でよい)の繰り返しパターン(1周期)が入るかを言えば良いわけで、次元は、とりあえず[回数/長さ]。ここで、回数という概念は、基準の任意性がなく、無次元として扱うべきですから、波数の次元は[長さ^-1]になります。実際の単位には、m^-1 や cm^-1 がよく使われますが、単位を付けないと、波の込み具合に関する情報を伝えることができません(メートルあたりなのかオングストロームあたりなのかで全然違う)から、無次元として扱うことはできません。

2π付きは、nikorinさんがおっしゃるように、回数のところを位相角で示す表現です。どちらの流儀をとるかは、使われるジャンルの関係式が簡単になるよう便宜的に選ばれるということだ思います。

なお、2π 自身は単なる実数で無次元。2π rad は、1周すなわち1回に対応するという意味では無次元ですが、座標自由度の角度という意味では、次元を持つとも考えられる、、という訳で、SI単位系でも「rad(ラジアン)」は、基本単位でなく「補助単位」というやや中途半端な扱いになっています。-少し脱線しました-
    • good
    • 1
この回答へのお礼

回答ありがとうございます。
波数の質問をして、改めて発見しました。
無次元だと基準がない。
心の中で「おおおっー!」と関心してしまいました。
考えたら当たり前なんですけど。

お礼日時:2002/11/27 22:03

k=2π/λは長さじゃなくて位相で見てるんですよ。


1波長分進めば位相が一回り、すなわちkλ=2πというわけです。

kの次元は[m^(-1)]ですが単位としては[rad/m]で位相の単位radが隠れているんです。
これをみれば明らかなように、単位長さあたりどれだけ位相が進むかという量が波数です。

1mで位相が4π進めば波数は4πで、1波長は2π位相が進みますから、2πを基準にして考えれば、
単位長さに2つ波があるということで、文字通り「波数」ですね。

ちなみに2次元、3次元の波数はベクトルで、波の進行方向を向いています。
    • good
    • 2
この回答へのお礼

回答ありがとうございます。
長さという発想が駄目でしたか。
位相ですね。普通、2πときたら位相ですよね。
波数という言葉から抜け出せませんでした。

お礼日時:2002/11/27 21:59

>それが2π[m]の中に何個入っているかですから、つまり、無次元になってしまいませんか?


2πというのはあくまで係数(単位のある定数、常数とは異なります)ですから[m]という単位はありません。無次元です。

つまり、 2π[無次元]/λ[m]ですから1/mになるのです。
1mの中に何個波があるのかというのが波数です。
もしこれが無次元だと、不明な長さの中にある波の個数を数えることになり、おかしいわけですね。

蛇足ですが、cgs単位系だと1/λと2πはつきません。吸光分析などの化学分析では昔からcgs単位系を使って1/λのほうを使うことが多かったです。(いまどうなったかは分かりません。化学は専門ではないので)
MKSA単位系だと2πが必要です。
(Maxwell方程式でのCGSとMASK単位系の定義の違いから来ています)
    • good
    • 0
この回答へのお礼

再度回答ありがとうございます。
他の方の回答を見て理解してから回答を見させて頂くと、言いたいことが分かります。
どうも、私は理解力が乏しいようです。

お礼日時:2002/11/27 21:55

結晶をX線を当ててX線回折をさせると沢山の回折点が出てきます。


この点=波数ベクトルは回折格子の方位ベクトルと直交し、その大きさは格子定数の逆数です。

また、X線回折の結果はフーリエ変換させるのと同じともいえます。
そのためk=2π/λとすることもありますが、本質的には上で述べたような事です。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

お礼日時:2002/11/27 21:57

波数ですが、字のごとく、波の数です。


正確には、仮に波長λの単位をm(メートル)とすると、
波数は、1mあたりの波の数です。

波は正弦波であらわされるので、その振幅Uは
U=U0sin(kx-ωt)
となります。
このときに、時間を固定すると、空間に広がる波の形が上式で
あらわされることになります。
というわけで、ωが時間周波数なら、kが空間周波数にあたり、
次元は、
λが1/sであるのに対し、kは1/mと長さであらわされているので、
空間に広がってるということが想像できるかと思います。

波については、線形の場合、重ねあわせが出来き、
フーリエ解析など、波数がやたら出てきます。
この場合、空間にいくつもの波があって、その波の識別はkによります。

参考になれば。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
なんとなく分かったような気になるのですが、何かもやもやしたものが取れないといった状況です。
せっかく、回答して頂いたのに僕の理解力に問題があるようです。

お礼日時:2002/11/27 21:49

>「波数は空間周波数とも言える。



この発想でよろしいと思いますよ。
つまり波長は、波の長さを表しています。逆に波数は「単位長さあたりの波の数」を表しているのです。
この単位長さあたりの波の数とはまさに周波数のことです。
たとえば、電気の周波数は、1秒あたりの波の数です。[cycle / sec]
Hzという単位は Hz = cycle /sec という単位なのです。

ですから、波数は cycle / m^-1 になり、通常個数は表記しませんので、 1/ m^-1 となるわけです。

2πの有無については単位系の問題が絡むため、まあつじつまあわせの定数と思ってください。

では。

この回答への補足

2πの問題は置いておきます。
でも、波数はcycle/m^-1ではなく、cycleになりませんか?
波長が一つの波の長さを現しているのですから、それが2π[m]の中に何個入っているかですから、cycleになる。つまり、無次元になってしまいませんか?

補足日時:2002/11/27 12:23
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波数の意味と波数ベクトル

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m]の波の波数はk1=1/100[m]となり、これは「100m中に1個の波がある」という意味であり、λ2=2[m]の波の波数はk2=1/2[m]となり、「2m中に1個の波がある」という意味で、いずれもk<1なのはどれくらいの割合で波が1つあるのかという事を表してるのだと思っています。k2は2[m]中に1つの波があるので、仮にその波を100[m]にも渡って観察すれば、その中に50個も波が存在する。一方、k1は100[m]内に1個しか波が存在しない。よってk2の波の方が波の数が多い波である。以上が波の「数」なのに次元が長さの逆数を取る理由だと解釈してるのですが、合っているでしょうか?

また、(正否は分かりませんが)波数kを以上のように考えているのですが、波数ベクトルという概念の理解に行き詰まっています。個数であり、長さの逆数を取る量がベクトル量で向きを持つというイメージが掴めません。本にはkx、ky、kzと矢印だけはよく見かけるのですが、その矢印がどこを基準(始点)としてどこへ向いているのか(終点はどこなのか)が描かれていないので分かりません。波数ベクトルとはどういう方向を向いていて、それはどういう意味なのですか?一応、自分なりに描いてみたのですが下の図で合っているでしょうか?(1波長置きに存在するyz平面に平行な面に直交するベクトルです)

私の波数の考えが合っているか、波数ベクトルが図のようで合っているかどうか、波数ベクトルとは何かをどなたか教えて欲しいです。

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m...続きを読む

Aベストアンサー

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このとき、x方向の波数は1、y方向の波数も1、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,1,0)
のように表すことができます。

さらに発展して考えたとき、x方向とy方向の波数が違っていてもいいですよね(下のリンクのような)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2B0.3*y^2%29%29
こうなるとx方向の波数は1、y方向の波数は0.3、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,0.3,0)
のように表すことができます。

このように波数ベクトルは、現実の波をx,y,z成分で分けたときのそれぞれの波長(λx,λy,λz)から求めたものなので、あくまで波がどういう形になるのかしか分かりません。
なので波の始点や終点という概念はありません。
この波数ベクトルの利点は、たとえば現実空間で
y=sin(1*x)+sin(2*x)+sin(3*x)+sin(4*x)+・・・+sin((n-1)*x)+sin(n*x)
を考えるととても複雑なグラフとなりますが、波数空間ではkx=1,2,・・・.nの点の集合として表すことができます。(よくいわれるスペクトル表示的なものです)



波数ベクトルを現実世界の何かとして考えることはあまりないので割り切ってしまった方が楽かもしれません。

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このと...続きを読む

Q波数に

ついてですがk=2π/λこの公式なんですがこれでなんで波の数がわかるんでしょうか??いまいち納得できません
たとえば波長が2mのだったら波数はπになるんですが
π個の波があることなんですか??

Aベストアンサー

まず1つの波は谷と山のセットです。そして1波長の長さは2πですよね、つまり2πで1つの波になるわけです。
だから、2πがいくつ入るか数えているんですから与式は正しいですよね

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q波数(k)を用いた空間座標表示を導入する意義を教えて下さい

金属結晶中の電子の状態について波数(k)を用いた空間座標表示を導入する意義を教えて下さい

Aベストアンサー

私もかつて金属電子論を勉強しはじめに、なぜこんな恣意的な表示をするのか?と悩んだことがあります。そのとき私が最終的に納得した答えを書きます。これだけが理由ではないかもしれませんが、私は以下のように考えて納得しました。

まず、仮にkでなく、単純に位置で表示することを考える。
すると、ある位置に対して電子のエネルギーを、横軸位置、縦軸エネルギーのグラフにプロットすることになる。
しかし量子力学では、位置固有状態が、かならずしもエネルギー固有状態ではないので、位置とエネルギーを同時に決定できない。
したがって、「ある位置にある電子のエネルギー」という上記のようなプロットは不可能。

では、どうしたらいいか?答えは、エネルギーと同時に固有状態になるある物理量を横軸に選び、縦軸エネルギー横軸???という形でプロットをすればいい。

仮に、結晶でなくただの一様な空間だと平面波がエネルギー固有状態で、
運動量と同時に固有状態になるので、この運動量あるいは、これをプランク定数(2πでわったもの)でわった波数kを横軸に選べばいい。

じゃあ、一様な空間でなく結晶の場合は?その場合でも実はエネルギーと
同時に固有状態になる物理量が存在する。それは結晶運動量でこれをhbarで割ったものが波数kになる。この存在を保証するのがブロッホの定理。

したがってkを横軸にとるとそのkのときのエネルギーとして、E-Kのプロットを作れる。

私もかつて金属電子論を勉強しはじめに、なぜこんな恣意的な表示をするのか?と悩んだことがあります。そのとき私が最終的に納得した答えを書きます。これだけが理由ではないかもしれませんが、私は以下のように考えて納得しました。

まず、仮にkでなく、単純に位置で表示することを考える。
すると、ある位置に対して電子のエネルギーを、横軸位置、縦軸エネルギーのグラフにプロットすることになる。
しかし量子力学では、位置固有状態が、かならずしもエネルギー固有状態ではないので、位置とエネルギーを...続きを読む

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

Q実空間と逆空間のイメージとつながり

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点になるのは球面はが広がった時に干渉して強め合ったところだけ出てきたってことですよね。
しかし、回折点がどの格子面に対応するのかがよく分かりません。(結晶の向きが分かっているってことなら、いいのですが。どこから面を透過してきた波なのか分からないのに基準はどこにとるのでしょう?)みなさんはどのようにはっきりとしたイメージが持てるようになりましたか、コツのようなものをお教えください。
ちなみに関連したことで、フーリエ変換というのも時間→(角)周波数ですから、単位を見て逆数になっているのでデルタ関数はいろんな周波数を含んでいるなぁとはなんとなく式を見て分かるのですが、こちらも(変換の過程の)イメージがはっきりしないのです。
どうもこれらの知識が繋がってきません。
これらのイメージを表示できるフリーソフトなどがあれば教えて下さい。
よろしくお願いします。

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点に...続きを読む

Aベストアンサー

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆空
>間に対応しているのか間のイメージがはっきりとつかめ
>ません。
については結論から言って上に書いた関係をはがき程度のメモに絵を描いてポケットに忍ばせておき、時折その絵を眺めつつイメージをたくましくしていく以外にないのではないでしょうか。フーリエ変換の関係も同じです。
このあたりのイメージを強めていくのに下記URLが参考になると思います。そこには「マイクロ波による散乱実験を通して逆格子空間を体感する」とあります。がんばってください。
(P.S)
フリーソフトは知りませんが、バンド理論というキーワードで検索すればヒットするかも知れません。

参考URL:http://labeweb.ph.kagu.sut.ac.jp/LabExercise/micro/micro.html

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q音響モード・光学モード

フォノンの光学モード、音響モードの図の見方がわかりません。わかりやすく説明できる方がいらっしゃったらお願いします。

ここ↓
http://cl.rikkyo.ne.jp/cl/2004/internet/kouki/rigaku/hirayama/041222/12_22.html
のページの下から1/4あたりにある図みたいなのです。

Aベストアンサー

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていません。なぜでしょうか。
 固体の振動を例にとると、式1はλを小さくしていくと問題が発生します。つまり式1がどんなに小さな波長にでも成立するとすると問題が発生します。波長が0.01nmになったらどうなります。原子の間隔は0.1nmのオーダーなので、それよりも狭い領域に波の振動が含まれるとはどういうことでしょう。そういう波はありえないというか意味がないのです。
つまり式1は波長が極端に短いところでは変更を受けるわけです。

音響モードと光学モードとは、分散関係でkを小さくしていった場合、振動数がゼロになるのが音響モードで、有限の値をとるのが光学モードです。

結晶の単位胞に原子が1個しかない結晶では、音響モードしかありません。光学モードが現れるためには、単位胞に2個以上の原子が含まれる必要があります。

それではなぜ「音響」モードと呼ぶのでしょう。
音響モードは実は充分kが小さい領域ではω=ckという線形な関係に漸近します。つまり式1です。式1が表すのは音波だったため、「音響」モードと呼ばれます。

それではなぜ「光学」モードと呼ぶのでしょう。単位胞に原子が2つ含まれる場合はイオン結晶でよく起こり、片方が+、もう片方が-に帯電しています。
それが質問者の示したwebの図にもあるように互い違いに振動するモードが光学モードにあたり、+と-の電荷が互い違いに振動すると電気分極が振動し、光(格子振動の場合は赤外光)と相互作用します。

光学モードをもつ結晶に赤外光を当てると、光学モードの振動数に相当する赤外光が吸収されます。「光」で観測できるから「光学」モードです。

フォノンの光学モードと音響モードの話は、どんな固体物理の教科書にも載っていると思いますので、以上の説明の手がかりに一度じっくり読んでみられたらいかがでしょうか?

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていませ...続きを読む


このQ&Aを見た人がよく見るQ&A