人に聞けない痔の悩み、これでスッキリ >>

金属結晶中の電子の状態について波数(k)を用いた空間座標表示を導入する意義を教えて下さい

このQ&Aに関連する最新のQ&A

A 回答 (6件)

私もかつて金属電子論を勉強しはじめに、なぜこんな恣意的な表示をするのか?と悩んだことがあります。

そのとき私が最終的に納得した答えを書きます。これだけが理由ではないかもしれませんが、私は以下のように考えて納得しました。

まず、仮にkでなく、単純に位置で表示することを考える。
すると、ある位置に対して電子のエネルギーを、横軸位置、縦軸エネルギーのグラフにプロットすることになる。
しかし量子力学では、位置固有状態が、かならずしもエネルギー固有状態ではないので、位置とエネルギーを同時に決定できない。
したがって、「ある位置にある電子のエネルギー」という上記のようなプロットは不可能。

では、どうしたらいいか?答えは、エネルギーと同時に固有状態になるある物理量を横軸に選び、縦軸エネルギー横軸???という形でプロットをすればいい。

仮に、結晶でなくただの一様な空間だと平面波がエネルギー固有状態で、
運動量と同時に固有状態になるので、この運動量あるいは、これをプランク定数(2πでわったもの)でわった波数kを横軸に選べばいい。

じゃあ、一様な空間でなく結晶の場合は?その場合でも実はエネルギーと
同時に固有状態になる物理量が存在する。それは結晶運動量でこれをhbarで割ったものが波数kになる。この存在を保証するのがブロッホの定理。

したがってkを横軸にとるとそのkのときのエネルギーとして、E-Kのプロットを作れる。
    • good
    • 5

金属結晶に限らず、並進対称性を有する場における物理量のエネルギー固有状態は、波動となります(ブロッホの定理)。


つまり、ある実数ベクトルkを用いて、lだけ離れたサイト間の物理量には、
u(l)=exp(ik・l)u(0)
が要請されます。
さらに、周期境界条件を用いると、第1ブリルアンゾーン内のkの値を用いれば、kに対する全ての物理量を適切に表現できることが分かります。
よって、無限に広がる結晶中において、アボガドロ数程度も存在する電子の状態を1つ1つ指定しなくても、第1ブリルアンゾーン内の波数kだけで指定できるのです。

電子状態をkで指定する意義はここにあると思います。
    • good
    • 1

固体物理学において、非常に多くの物理現象が波長の関数になっているのですが、回答1に述べられているように、波動の運動量やエネルギーが波長の逆数=波数の関数とした方が単純な形式となるため、ほとんどの表式は波長では無く波数で現すことになります。

従って、電子のバンド構造や、回折現象などを考えるには、実空間では無くて波数空間で考えた方が理解しやすくなるからです。
こういう基本的な疑問で有っても、回答3で述べられているように、何故そうなのか?を考えることは大事で、盲目的に勉強を進めるよりは何故かを理解してから勉強する方がはるかに身につくと思います。
ただ、回答2のアドバイスも無理からぬところが有りまして。固体物理の初学者には、実際に波数空間を使う具体的御利益が見えないのが普通です。通常の固体物理の参考書は、演繹的に固体物理が理解できるような順序で学習項目が並んでいますから、最初にいきなり波数空間の話が来ちゃうんですよね。なんで、こんなことを考えないといけないのか分からないままに無理矢理進むと、その後で具体的な物理現象の解説が出てきて、そこでようやく波数空間の必要性が分かってくるという感じですよね。
本当は、何か物理現象の具体例を出してくれて、波数空間の必要性を示してくれればピンとくるのですが。
    • good
    • 1

物理学を学ぶのは、柔道や書道を学ぶのとは違います


疑問に思ったことは、何でも徹底的に追求するべきです
「習うより慣れろ」は物理学にとって邪道です。
余計なことを考えたから、ペニシリンも発見され
宇宙の背景放射も発見されたのです
    • good
    • 2

”波数(k)を用いた空間座標表示”とは奇妙です.通常は波数空間といいます.あなたにとって今必要なことは何も余計なことは考えず,真面目に勉強することです.「習うより慣れろです.」何一つの仕事も習得せず,自分にあった仕事を探しつづけて年老いてしまうフリータとどこか似ています.


”花”は英語では”flower”です.何故そんな漢字をかくのか,何故そんなスペルになったのか考えることは余計なのです.ご質問の本質は数学的には群論とフーリエ変換に由来します.物理学としては量子力学が深く関係します.あなたが満足できるレベルに到達するには長期間にわたる絶え間ない努力が必要です.
    • good
    • 0

波数kにプランク定数h÷(2π)をかけると運動量pになります。


横軸にエネルギーEをとり、縦軸に波数kをプロットすると、それはエネルギーと運動量をグラフ化したものになります。
エネルギーEは角速度ωにh÷(2π)をかけたものですから、E対kの関係は、ω対kの関係を表したものともみなすことができます。位相速度vpはω/kですし、群速度vgはdω/dkで表されます。E対kプロットの原点からの傾きが位相速度を、接線が群速度を表していることになります。この関係が直線でないということは、速度が周波数で変化することを表し、いくつかの周波数成分から構成される波束が伝播する間に散りじりに分かれてしまう分散をこのグラフは示します。

また、波数kを結晶格子の実空間から求めることは、逆空間を求めることに対応します。これは、フーリエ変換をして直交して逆次元の新たな次元を導入することになります。
この考え方のメリットは、無限に続くある周期性を持つ結晶構造の中の格子振動(原子振動)を有限な空間に閉じ込めることができます。
さらに、電子線やX線などで結晶の回折パターンを観察し写真などに撮影すると、この映像がまさに逆空間つまりk空間を撮影したものになります。

勉強している時には、その奥深さが分からないのですが、一通り学んでみて後で振り返るとすごくおくが深いことであることにおき好きになられると思います。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波数のイメージとその次元

題名の通り、波数のイメージとその次元がどうも食い違ってしまうと言いますか、ちょっと納得できないので質問します。
波数の定義は、k=2π/λ(または、本によってはk=1/λ)で与えられています。ここで、私は波数は2πという単位の長さを波長で割っているのであるから、これは単位長さ当たりの波の数だと考えました。大学の先生に聞いてもあやふやな答しか返ってきませんでした。(大学の先生はいろんなこと知っているけど、あまり考えていないの?(疑))
その後、いろいろ調べて「波数は空間周波数とも言える。」と書いてあるのを見つけました。普通、周波数と聞けば、単位時間当たりに何回振動するかだけど、これは時間ではなく空間で与えているだけかと思って納得してしまったのです。
でも、それでは波数の次元は無次元になってないとおかしいではありませんか。
しかし、本で調べたところ、波数の次元はm^-1ではありませんか。
波長の次元はmとして、2πの次元は無次元でないといけません。では、これは角度でradなのでしょうか?
そうすると、先ほど納得したイメージではつじつまが合いません。2πを長さと考えてイメージを作ったのですから。
「波数を定義すると便利だから。」というのを聞いたことがあるのですが、波数のイメージはもてないのでしょうか?(波数っていうぐらいだから、波の数じゃないの?)

題名の通り、波数のイメージとその次元がどうも食い違ってしまうと言いますか、ちょっと納得できないので質問します。
波数の定義は、k=2π/λ(または、本によってはk=1/λ)で与えられています。ここで、私は波数は2πという単位の長さを波長で割っているのであるから、これは単位長さ当たりの波の数だと考えました。大学の先生に聞いてもあやふやな答しか返ってきませんでした。(大学の先生はいろんなこと知っているけど、あまり考えていないの?(疑))
その後、いろいろ調べて「波数は空間周波数とも言える。...続きを読む

Aベストアンサー

おっしゃるとおり波数のイメージは>単位長さあたりの波の数
でまったくOKです。
ですから次のように考えてはいかかでしょう?
10m中に波が5回あるとき波数を求めるには、5(無次元)÷10(m)ですね。
ちゃんと次元もm^-1となるのはすぐに納得されると思います。
この時、先に波長2mが分かっていたらこういう求め方もできます。
波長は波1回あたりの長さだから10(m)÷5(無次元)として求めますが、
この式は波数とちょうど逆数の関係にあるので、波数=1/2mと求められます
ここで注意していただきたいのは1mを2mで割っているのではなく、2m(波長)の逆数をとっているという点です。
波数の定義の式も2πmや1mを波長で割ったのではなく、波長の逆数に2πをかけたもの、波長の逆数そのもの、と捉えるのが正しいのです。

もうひとつ波動関数の式 y=Asin(wt-kx)との関係から捉えるのも重要です。
(y:変位,A:振幅,t:時間,x:基準点からの距離)
sin()の中は位相で角度(無次元)なのでw,kの次元はそれぞれt,xの次元の逆数とするのです。ここでkを波長λを用いて求めると2π/λ(rad/s)となります
波動の式としてy=sin2π(wt-kx)の形をもちいた時には2πが消えたk=1/λとなるわけです。
長くなりましたが少しでも直感的理解の助けになれば幸いです。

おっしゃるとおり波数のイメージは>単位長さあたりの波の数
でまったくOKです。
ですから次のように考えてはいかかでしょう?
10m中に波が5回あるとき波数を求めるには、5(無次元)÷10(m)ですね。
ちゃんと次元もm^-1となるのはすぐに納得されると思います。
この時、先に波長2mが分かっていたらこういう求め方もできます。
波長は波1回あたりの長さだから10(m)÷5(無次元)として求めますが、
この式は波数とちょうど逆数の関係にあるので、波数=1/2mと求められます
ここで注意していただきたいのは1mを2...続きを読む

Q波数の意味と波数ベクトル

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m]の波の波数はk1=1/100[m]となり、これは「100m中に1個の波がある」という意味であり、λ2=2[m]の波の波数はk2=1/2[m]となり、「2m中に1個の波がある」という意味で、いずれもk<1なのはどれくらいの割合で波が1つあるのかという事を表してるのだと思っています。k2は2[m]中に1つの波があるので、仮にその波を100[m]にも渡って観察すれば、その中に50個も波が存在する。一方、k1は100[m]内に1個しか波が存在しない。よってk2の波の方が波の数が多い波である。以上が波の「数」なのに次元が長さの逆数を取る理由だと解釈してるのですが、合っているでしょうか?

また、(正否は分かりませんが)波数kを以上のように考えているのですが、波数ベクトルという概念の理解に行き詰まっています。個数であり、長さの逆数を取る量がベクトル量で向きを持つというイメージが掴めません。本にはkx、ky、kzと矢印だけはよく見かけるのですが、その矢印がどこを基準(始点)としてどこへ向いているのか(終点はどこなのか)が描かれていないので分かりません。波数ベクトルとはどういう方向を向いていて、それはどういう意味なのですか?一応、自分なりに描いてみたのですが下の図で合っているでしょうか?(1波長置きに存在するyz平面に平行な面に直交するベクトルです)

私の波数の考えが合っているか、波数ベクトルが図のようで合っているかどうか、波数ベクトルとは何かをどなたか教えて欲しいです。

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m...続きを読む

Aベストアンサー

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このとき、x方向の波数は1、y方向の波数も1、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,1,0)
のように表すことができます。

さらに発展して考えたとき、x方向とy方向の波数が違っていてもいいですよね(下のリンクのような)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2B0.3*y^2%29%29
こうなるとx方向の波数は1、y方向の波数は0.3、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,0.3,0)
のように表すことができます。

このように波数ベクトルは、現実の波をx,y,z成分で分けたときのそれぞれの波長(λx,λy,λz)から求めたものなので、あくまで波がどういう形になるのかしか分かりません。
なので波の始点や終点という概念はありません。
この波数ベクトルの利点は、たとえば現実空間で
y=sin(1*x)+sin(2*x)+sin(3*x)+sin(4*x)+・・・+sin((n-1)*x)+sin(n*x)
を考えるととても複雑なグラフとなりますが、波数空間ではkx=1,2,・・・.nの点の集合として表すことができます。(よくいわれるスペクトル表示的なものです)



波数ベクトルを現実世界の何かとして考えることはあまりないので割り切ってしまった方が楽かもしれません。

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このと...続きを読む

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

Qフーリエ変換:実空間と逆空間の対応について

実空間をフーリエ変換すると逆空間になります。逆空間では逆格子ベクトルというものがあり、これが小さい時は実空間においてはかなりの大きなベクトルに対応するらしいです。すなわち、実空間で大きな範囲は、逆空間では小さな範囲に対応しているようです。これらを理路整然と説明して頂きたいです。
 また、実空間と逆空間を関係付ける式もあれば示して頂ければ、納得します。

Aベストアンサー

ご質問は「空間周波数空間とは何か」ですので、それに絞ってお答えします。

波動や振動(空間的なものでも、時間的なものでもよい)には、必ずその「細かさ」を表現するパラメータがあります。時間的な振動であればそれは「周波数」か「周期」であり、空間的な振動であれば「空間周波数」か「波長」です。また、周波数と周期が逆数関係であるように、空間周波数と波長も逆数関係にあることも先の回答の通りです。

ある時間的に変化する波形をフーリエ変換(あるいはフーリエ級数展開)すると、例えば周波数空間上・・・1次元であれば単なる周波数軸・・・でスペクトルとして表現することができます。下の図の通り。

スペクトル強度I(f)

│    ■
│ ■  ■■
│ ■  ■■■ ■
│■■■■■■■■■
└─────────→周波数f

同様に空間的に変化する波形を考えます。弦の上の定在波などを思い浮かべればよいでしょう。
簡単のために1次元の波形を考えます。フーリエ変換すると、空間周波数軸上にスペクトルとして表現できます。以下の通りです。


スペクトル強度I(v)

│    ■
│ ■  ■■
│ ■  ■■■ ■
│■■■■■■■■■
└─────────→空間周波数v

上図の「v軸」に当たるものを3次元に拡張したのが「空間周波数空間」です。
スペクトル強度に対応する量Iがあり、Iはx方向、y方向、z方向それぞれの空間周波数の組(u, v, w)の組の関数として表されます。3次元の各点(u, v, w)に対応して値(強度)が一つ定まる関数と理解してください。

時間変化信号のスペクトル I(t)
3次元空間信号のスペクトル I(u, v, w)

と対応付けられます。(u, v, w)が定義される(数学的な)空間が、空間周波数空間です。
逆格子を作る操作というのは最初は混乱すると思いますが、実空間のあるベクトル(通常は波長に対応するもの)を逆格子空間(空間周波数空間)で相当するベクトルに変換する手続きであり、1次元であれば逆数を計算することに相当しているわけです。

空間周波数に近い概念で「波数」という表現を用いることもあります。むしろ、物理学の世界などではこちらの方が多く使われます。

時間変化しない信号(定在波、または波動のある一瞬をとらえたもの)は
A[exp(ikx)]
なる形で表現できます。Aは振幅、iは虚数単位、xは位置です。
kは「波数」とよばれる量で、長さの逆数の次元を持ちます。単位長さに含まれる波(1周期分)の逆数に2πをかけたものです。例えば波長2[m]の波なら、波数は2π/2=π[m^(-1)]です。波数が大きいほど単位長さにたくさんの波が詰まっている、つまり短い周期で振動する波であり空間周波数の高い波といえます。

3次元の波(例えば、電磁波)に拡張すると
A[exp(i(→k・→r-ωt))]
と書き改められます。今度は空間内の位置の決定に3つの成分が必要ですから、位置ベクトルとして→r=(x, y, z)を用います。また波数も3つの成分を持ちますから、→k=(k_x, k_y, k_z)とベクトルとして表示されます。ここに下付添字を「_x」のように表現しました。(k_x, k_y, k_z)の物理的な意味ですが、x方向の単位長さに含まれる波の数×2π、同じくy方向の波の数×2π、z方向の波の数×2πです。「・」は申すまでもなく、内積の記号です。(周波数fに対し、角周波数ω=2πfの関係がありますがこれに当たるものと思えばよい)
このベクトル(k_x, k_y, k_z)を「波数ベクトル」などと呼びます。3次元空間の正弦波一つに対し、波数ベクトルが一つ定まります。上記のスペクトルの議論と同様に、波数ベクトルを引数として関数を定義することも可能です。

ご質問は「空間周波数空間とは何か」ですので、それに絞ってお答えします。

波動や振動(空間的なものでも、時間的なものでもよい)には、必ずその「細かさ」を表現するパラメータがあります。時間的な振動であればそれは「周波数」か「周期」であり、空間的な振動であれば「空間周波数」か「波長」です。また、周波数と周期が逆数関係であるように、空間周波数と波長も逆数関係にあることも先の回答の通りです。

ある時間的に変化する波形をフーリエ変換(あるいはフーリエ級数展開)すると、例えば周波数空間...続きを読む

Q実空間と逆空間のイメージとつながり

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点になるのは球面はが広がった時に干渉して強め合ったところだけ出てきたってことですよね。
しかし、回折点がどの格子面に対応するのかがよく分かりません。(結晶の向きが分かっているってことなら、いいのですが。どこから面を透過してきた波なのか分からないのに基準はどこにとるのでしょう?)みなさんはどのようにはっきりとしたイメージが持てるようになりましたか、コツのようなものをお教えください。
ちなみに関連したことで、フーリエ変換というのも時間→(角)周波数ですから、単位を見て逆数になっているのでデルタ関数はいろんな周波数を含んでいるなぁとはなんとなく式を見て分かるのですが、こちらも(変換の過程の)イメージがはっきりしないのです。
どうもこれらの知識が繋がってきません。
これらのイメージを表示できるフリーソフトなどがあれば教えて下さい。
よろしくお願いします。

X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。
逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。
実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点に...続きを読む

Aベストアンサー

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆空
>間に対応しているのか間のイメージがはっきりとつかめ
>ません。
については結論から言って上に書いた関係をはがき程度のメモに絵を描いてポケットに忍ばせておき、時折その絵を眺めつつイメージをたくましくしていく以外にないのではないでしょうか。フーリエ変換の関係も同じです。
このあたりのイメージを強めていくのに下記URLが参考になると思います。そこには「マイクロ波による散乱実験を通して逆格子空間を体感する」とあります。がんばってください。
(P.S)
フリーソフトは知りませんが、バンド理論というキーワードで検索すればヒットするかも知れません。

参考URL:http://labeweb.ph.kagu.sut.ac.jp/LabExercise/micro/micro.html

逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると
a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V
Vは結晶の単位胞の体積でV=a・(b×c)=・・・
一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。
以上、前書きが長くなりましたが、ご質問の
>実空間からどのように考え(どのように変換して)逆...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q音響モード・光学モード

フォノンの光学モード、音響モードの図の見方がわかりません。わかりやすく説明できる方がいらっしゃったらお願いします。

ここ↓
http://cl.rikkyo.ne.jp/cl/2004/internet/kouki/rigaku/hirayama/041222/12_22.html
のページの下から1/4あたりにある図みたいなのです。

Aベストアンサー

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていません。なぜでしょうか。
 固体の振動を例にとると、式1はλを小さくしていくと問題が発生します。つまり式1がどんなに小さな波長にでも成立するとすると問題が発生します。波長が0.01nmになったらどうなります。原子の間隔は0.1nmのオーダーなので、それよりも狭い領域に波の振動が含まれるとはどういうことでしょう。そういう波はありえないというか意味がないのです。
つまり式1は波長が極端に短いところでは変更を受けるわけです。

音響モードと光学モードとは、分散関係でkを小さくしていった場合、振動数がゼロになるのが音響モードで、有限の値をとるのが光学モードです。

結晶の単位胞に原子が1個しかない結晶では、音響モードしかありません。光学モードが現れるためには、単位胞に2個以上の原子が含まれる必要があります。

それではなぜ「音響」モードと呼ぶのでしょう。
音響モードは実は充分kが小さい領域ではω=ckという線形な関係に漸近します。つまり式1です。式1が表すのは音波だったため、「音響」モードと呼ばれます。

それではなぜ「光学」モードと呼ぶのでしょう。単位胞に原子が2つ含まれる場合はイオン結晶でよく起こり、片方が+、もう片方が-に帯電しています。
それが質問者の示したwebの図にもあるように互い違いに振動するモードが光学モードにあたり、+と-の電荷が互い違いに振動すると電気分極が振動し、光(格子振動の場合は赤外光)と相互作用します。

光学モードをもつ結晶に赤外光を当てると、光学モードの振動数に相当する赤外光が吸収されます。「光」で観測できるから「光学」モードです。

フォノンの光学モードと音響モードの話は、どんな固体物理の教科書にも載っていると思いますので、以上の説明の手がかりに一度じっくり読んでみられたらいかがでしょうか?

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていませ...続きを読む

Qバンド構造について

バンド構造について
バンド構造のグラフの見方がよくわかりません。
例を挙げると、http://ja.wikipedia.org/wiki/%E3%83%90%E3%83%B3%E3%83%89%E6%A7%8B%E9%80%A0のページの右の方に載っているシリコンのバンド構造の曲線の読み取り方がわかりません。
たとえばΓ点のところで一番下の曲線が極小になっていますが、このバンド曲線では、Γ点では対応するエネルギー値(-14eVくらい)しかとり得ないということなんでしょうか?

どなたかご教授願います。

Aベストアンサー

>バンド曲線の上に電子が敷き詰められていくっていうイメージで合ってるのでしょうか?
バンド曲線の"上"というのを"on"の意味で使っているのならだいたい正しいです。(違うとは思いますが"over"の意味にも解釈できるので念のため)
ただ、実際に電子に占有されているかどうかの情報はバンドには書かれていません。

>また、『もっともラフなバンドの表現』の図の縦軸はエネルギーだと思うんですが、横軸は何なんでしょうか?
こういう書き方をする場合には位置である事が多いです。
ただ、この文脈だと横軸には特に意味がないと考えても問題ありません。


1次元結晶のバンドが分かるのなら基本的にはご質問のシリコンの場合にも同じものが書いてあるんです。

ただ、2次元結晶のバンドを書きたいと思ったら、エネルギーと波数ベクトル(kx,ky)の3つの軸が必要になります。
3次元結晶のバンドを書きたいと思ったら、エネルギーと波数ベクトル(kx,ky,kz)で4つの軸が必要になります。

2次元結晶の場合は投影図とかで何とか紙に書くことができますが、3次元結晶の場合には書けませんよね?
だから普通は特別な点だけ抜き出してバンドを書きます。
例えばΓというのは(0,0,0)という波数ベクトルを表していますので、
シリコンの場合k=(0,0,0)の状態は-14eV,0ev,4eV,5eVの付近にある事がご質問のwikipediaの図から読み取れます。

>バンド曲線の上に電子が敷き詰められていくっていうイメージで合ってるのでしょうか?
バンド曲線の"上"というのを"on"の意味で使っているのならだいたい正しいです。(違うとは思いますが"over"の意味にも解釈できるので念のため)
ただ、実際に電子に占有されているかどうかの情報はバンドには書かれていません。

>また、『もっともラフなバンドの表現』の図の縦軸はエネルギーだと思うんですが、横軸は何なんでしょうか?
こういう書き方をする場合には位置である事が多いです。
ただ、この文脈だと横軸には特...続きを読む

Qブロッホの定理とは何を証明してるのですか?

数式で色々と計算して波動関数の周期性を説明しているのだと思いますが、ブロッホの定理は結局何を意味しているのでしょうか。結晶のように周期ポテンシャルが存在すれば、そりゃあ電子の波動関数も周期的に分布するのでは?と、素人の浅はかな考えを持ってしまっていて、定理の意味やその重要さが見えないままでいます。

どなたかブロッホの定理が示す意味・ブロッホの定理のおかげ可能になった事・理論or工学への貢献などを教えてもらえませんか。

Aベストアンサー

基本並進ベクトル分だけ波動関数を平行移動した時に、もとの波動関数にならなくても位相因子がずれる分には同じ状態である事に変わりはないので何も問題ないんですよ。そしてその位相因子がどういう形になるかを言っているのがBlochの定理です。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング