
No.1ベストアンサー
- 回答日時:
ビオサバールの法則、有限要素法、差分法等を使って3次元で周辺磁界を求め磁気エネルギーQを求めます。
それをQ=0.5LI^2で自己インダクタンスが求まるので、電流1Aのときの磁気エネルギーだとするとL=2Qで求まります。まわりに磁性体がある場合はビオサバールの法則では少し難しいです。できなくはないですけど・・・。
解析的に求めたいのなら、ブスバーの形状によって変わると思います。たとえば正方断面とか円断面とか・・・。円断面なら簡単ですよ。電気学会電磁気学に詳しい説明があるかなと思います。
半径aの円形導体のインダクタンス
Lo:外部インダクタンス
Lo = (μ0/2π)(ln(2/a)-1)
Li:内部インダクタンス
Li = μ0/8π
L = Lo+Li
となります。注意としては中空導体の場合式が長くなるのここではカットします。
ただ、ブスバーも周波数によって自己インダクタンスがかわりますので注意する必要があると思います。アルミブスバーをそんな高周波で使うことなんてないとおもいますけど・・・。
この回答へのお礼
お礼日時:2002/12/11 17:03
早速のご回答、有り難う御座います。
今まで、0.6μH/mとおおざっぱな考え方でしたので、参考になりました。
本当に、有り難う御座いました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
円柱対称(円筒対称)と、軸対...
-
相当直径(等価直径)の求め方に...
-
断面二次モーメントのひし形に...
-
道路の図心について
-
アルミ・ブスバーのインダクタ...
-
流体力学について
-
この「α」の意味は?
-
レイノルズ数について
-
段付き回転軸のねじりモーメント
-
材料力学 断面モーメントについて
-
流体力学の流れにつて
-
円の断面二次モーメント
-
代表(的)断面とは?
-
等辺山形鋼の断面二次モーメン...
-
角材とツーバイ材の違いは何で...
-
弾性力学における,曲げとねじ...
-
断面が矩形の場合の表皮の深さ
-
(材料力学) 複雑な断面の断面係数
-
断面二次モーメント慣性モーメ...
-
台形の図心の求め方についてです
おすすめ情報