
こんにちは
単軸まわりの回転運動を考える場合、回転した角度θz(ここではZ軸周りとします)とすれば角速度ωz=dθz/dt、角加速度αz=dωz/dt=d^2θz/dt^2とあらわされると思います
ではX,Y,Z軸で同時にθx, θy,θz回転している場合の角速度、角加速度はどのような表記になりますでしょうか?
微小時間で角度の増加が極めて小さければ、(ωx, ωy, ωz)=(dθx/dt, dθy/dt, dθz/dt)、(αx, αy, αz)=(d^2θx/dt^2, d^2θy/dt^2, d^2θz/dt^2) となると考えれば良いのでしょうか? 逆に微小時間での角度増加が大きい場合はどのように考えればよいのでしょうか?
No.8ベストアンサー
- 回答日時:
ランダウの内容については,後日お伝えします。
とりあえず同等と思われる次のページを見つけましたので
参考にしてください。
http://www6.ocn.ne.jp/~simuphys/daen1-1.html
ランダウのものはもっとすっきりと,行列もなくコンパクトで
1ページちょっとにまとまっています。
No.10
- 回答日時:
>>厳密にやるためには(=各角度の増加分が無視できないほど大きければ)、角度の増加分を元の軸に投影(=方向余弦)した分を角速度・角加速度に考慮しなければならない。
また考慮の仕方は回転順序によって変わる。概ねそういう理解でいいのではないでしょうか?
大体において,こうした解析の最終目標は,普通は外界に固定された
座標系で剛体がどういう姿勢にあってどう回転しているかを知ること
ですよね。オイラーの角の方法は,次々と動いていく剛体に固定された
軸の変位をどう記述するかという点での便宜から生じたものだと思い
ます。現在の姿勢からの変位を記述するには現実的な方法といえると
思います。ただし,回転順序で記述が変わるのですから,当然オイラー
角そのものから角速度をダイレクトに得ることはできないわけですね。
現実の瞬間回転軸は1つです。その方向を示すのが角速度ベクトル
なので,オイラー角とは本質的に異なるのだと思います。
私も,興味があったのでつい能力以上のテーマに手をつけてしまい,
ぐちゃぐちゃかきまぜてしまいましたが,何とかそれらしいものを
案内することができてほっとしています。正直のところ,具体的な
応用の内容にも興味があるところですが,また関連する質問でも
されるような機会があったら,考えておられることの一端でも
ご紹介ください。おかげさまで私もだいぶ勉強になりました。
yokkun831様
重ね重ねありがとうございます。
また検討内容で行き詰まることがあれば、
この場にて、相談させていただければと思います。
その際は、何卒ご協力よろしくお願いいたします。
No.9
- 回答日時:
この回答への補足
yokkun831様のご協力に重ね重ね感謝いたします。
私の理解では、
厳密にやるためには(=各角度の増加分が無視できないほど大きければ)、角度の増加分を元の軸に投影(=方向余弦)した分を角速度・角加速度に考慮しなければならない。また考慮の仕方は回転順序によって変わる。
ですが、大筋はこの理解でよろしいでしょうか?
以上、丁寧に調べていただき、本当にありがとうございます。
No.7
- 回答日時:
だいぶこねくり回してしまいましたが・・・
ランダウ・リフシッツ理論物理学教程「力学」§35に,
目的のものをみつけました。期待にそうものかどうかは
わかりませんが,とりあえず結果のみ書きます。
使われている文字は,テキストに合わせてありますので
これまでのものとは違いますからご注意。
静止座標系X,Y,Zとし,回転体の軸x1,x2,x3をとります。
X,Y,Zに対するx1,x2,x3軸の方向を定めるオイラーの角と
回転順序を次のようにとります。
z軸周りにφ→新しいx軸周りにθ→新しいz軸周りにψ
このとき,角速度ベクトルΩのx1,x2,x3軸方向成分は
次のようになるようです。
Ω1=φ'sinθsinψ+θ'cosψ
Ω2=φ'sinθcosψ-θ'sinψ
Ω3=φ'cosθ+ψ'
この結果にいたる過程をお知りになりたいのであれば,
補足をしてください。オイラー角の回転順序を変えたいと
いうことになると,自分で計算しなければなりませんから。
この回答への補足
yokkun831様
ご丁寧に調べていただき、ありがとうございます。
お調べいただきました結果の導出過程を教えていただけないでしょうか?
また、理解しやすい参考文献等ございましたら後学のために、教えていただきたいのですが‥
以上、よろしくお願いいたします。
No.6
- 回答日時:
何かと混乱させてごめんなさい。
たとえば球体に任意の軸をとるとき,自由度は2です。
地球なら,緯度経度で軸の通る点を指定できます。
だから回転の自由度は2ですよね。自由度3の回転は
ありえないと思います。仕切りなおしてみましょう。
No.5
- 回答日時:
やっぱりおかしいですね。
オイラーの角と変位角を同一視するのはまずいです。現実に直交3軸同時回転は数学的にありえなくない
ですか?
任意の回転は瞬間的にはもちろんあるひとつの合成軸まわりの回転
としてまとめることができますが,直交軸周りの回転を考えるとき
2軸周りしか物理的にも無理ですよね。だから,オイラーの角は
回転順序によって変わるのではないでしょうか。直交3軸同時回転
が成り立つなら,回転順序で結果が変わるはずがありません。
根本的に考え方を変える必要がありそうな気がします。
No.4
- 回答日時:
途中挫折したり間違えたりするかもしれませんので,
そのつもりで軽い参考にしてください。
>>・微小角度変化であれば上式でほぼ等しいといえるのでしょうか?
はじめ,私はこれはダメだと思ったのですが,いいみたいですね。
なぜなら,回転順序が約束されているからです。ただし,順序で
後のほうの回転角が前のほうの回転角に依存しますから,無限小
変位に限定されると思います。数値計算であれば,小さければ
小さいほど誤差が減じるのではないでしょうか?
なお,(x,y,z)から(X,Y,Z)への座標変換は,
[X] [0,CzSySx,CzSyCx][x]
[Y]=[0,SzSySx,SzSyCx][y]
[Z] [0, 0, 0 ][z]
のようになると思います(オイラー回転角による座標系の回転
変換行列を3つかけました)。ただし,Cx=cosθx,Sy=sin θy'
などと略記しました。この変換を繰り返すことで,回転体上の
座標,角速度,角加速度を静止系の記述として表すことができる
のではないでしょうか? まだ自信はありません。
No.3
- 回答日時:
>>例えば、物体の位置・姿勢を表現するのに、オイラー角やロール・ピッチ・ヨーを使用する方法があると思いますが、あれらには回転体に固定した3軸の回転角度を用いていると思います。
オイラー角は,移動前の基準線が固定されており,この基準線自体は
回転体に固定された軸に相当するものではないですよね?
ロール・ピッチ・ヨーも基準となる軸は飛行機に固定されたものでは
ありません。
このように,運動を記述するためには回転体の外に固定された軸を
用いるのが普通です。X,Y,Z軸を回転体に固定して,それぞれの
x,y,z軸に対する回転を考えようというのであればわかります。
それとも,ある瞬間のX,Y,Z軸をx,y,z軸として用いて次の瞬間の
X,Y,Z軸の位置を知ろうという試みでしょうか?
正直私自身明確な回答をさしあげる自信はありませんが,その辺を
明示されれば回答も得やすいかと思います。頼りなくてごめんなさい。
この回答への補足
yokkun831様
いつもご回答ありがとうございます。
私自身、基準となる座標系や対象となる座標系の定義があいまいでyokkun831様にお手数をおかけし、申し訳ありません。
ウィキペディアhttp://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4% …ではz-x-z系のオイラー角の図が記載されておりますが、基準座標系(x,y,z)がz軸→x'軸→z''軸の順で回転し、回転後の基準座標系(x''',y''',z''')が対象座標系(X,Y,Z)と一致するとき、それぞれの軸の角度変化はz軸=α、x'軸=β z''軸=γと定義されています。
これを基に私がしたい試みとしては、
ある剛体{座標系(x,y,z)}がx,y,zと一致しない軸まわりで回転し、回転後の座標系が(X,Y,Z)になるとします。その際、オイラー角の考えを用い、回転順序を仮にx軸→y'軸→z''軸、それぞれの回転角度がθx, θy', θz''とした場合、回転後の座標系(x''',y''',z''')が (X,Y,Z)と一致することが分かっているとします。
ある軸まわりで回転した剛体の回転角度をオイラー角で表現したθx, θy', θz''を用いて、(ωx, ωy, ωz) = (dθx/dt, dθy'/dt, dθz''/dt)、(αx, αy, αz) = (d^2θx/dt^2, d^2θy'/dt^2, d^2θz''/dt^2) で表現してもよいのだろうかのいうのが疑問です。もとのy,zとy',z''は違う軸を指しているため、
・角度変化が大きければ上式は成立しないと思いますが、どの様に表されるのでしょうか?
・微小角度変化であれば上式でほぼ等しいといえるのでしょうか?
・またよいのであれば何を持って微小というのでしょうか?
に悩んでいます。
以上、長々となり、また分かりにくい表現となりましたが、ご回答よろしくお願いいたします。
No.2
- 回答日時:
私が先に申し上げたのは,外に固定した座標軸で表記した
場合についてです。回転体に固定した3軸ということに
なりますと,回転体のある1点は常に同じ座標ですから
運動を追跡することはできません。角速度,角加速度を
同様に記述することは可能ですが,運動の記述にはなり
えないと思います。
この回答への補足
yokkun831様
いつもご回答ありがとうございます。
>運動の記述にはなりえない
とはどのような意味でしょうか?
例えば、物体の位置・姿勢を表現するのに、オイラー角やロール・ピッチ・ヨーを使用する方法があると思いますが、あれらには回転体に固定した3軸の回転角度を用いていると思います。(もちろん同時に回転している場合には回転順序をどのように定義するかの問題があると思います)
>角速度,角加速度を同様に記述することは可能
回転体に固定した3軸での回転角度がθx, θy,θzの場合、固定した3軸周りの角速度・角加速度は(ωx, ωy, ωz)=(dθx/dt, dθy/dt, dθz/dt)、(αx, αy, αz)=(d^2θx/dt^2, d^2θy/dt^2, d^2θz/dt^2)で表現可能という理解で宜しいでしょうか?
以上、当方の知識不足のため、お手数をおかけしますが、何卒ご教示お願いいたします。
No.1
- 回答日時:
X,Y,Z軸が固定軸であれば,微小時間に関わらず,
(ωx, ωy, ωz)=(dθx/dt, dθy/dt, dθz/dt)
(αx, αy, αz)=(d^2θx/dt^2, d^2θy/dt^2, d^2θz/dt^2)
になると思います。ボールをもって適当にめちゃくちゃ回転
させてみるとき,瞬間的な回転軸はひとつに決まります。ただ,
その軸の方向も動いていくというわけですよね。ですから,
その瞬間の回転軸方向が(ωx, ωy, ωz)であり,軸の移動が
(αx, αy, αz)によって決まることになります。
それとも,X,Y,Z軸は回転体に固定した軸と考えたいのですか?
そうなると話はまったく変わります。
この回答への補足
yokkun831様
ご回答、ありがとうございます。
>その瞬間の回転軸方向が(ωx, ωy, ωz)であり,軸の移動が(αx, αy, αz)によって決まることになります。
とは、微小時間後の軸の向きが(ωx, ωy, ωz)分ずれ、その移動の速さが(αx, αy, αz)という意味でしょうか?
>X,Y,Z軸は回転体に固定した軸と考えたいのですか?
はい。分かっているものは回転体の座標系(ローカル座標)での各回転角度です。
そのローカル座標系での角速度、角加速度を知りたいのです。
以上、前提条件不足で申し訳ありませんでしたが、ご回答よろしくお願いいたします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 x=r・cosθの2回微分 θ=ωtとすると? 5 2022/05/10 23:53
- 物理学 力学的エネルギー保存則について 4 2023/06/06 14:02
- その他(プログラミング・Web制作) 物理の斜方投射のシミュレーションにおける位置や速度の単位について 4 2023/05/31 09:50
- 物理学 力学の微分の質問です。 答えを教えてください。至急です。 問題1ある軸の上を並進運動している物体の位 2 2023/01/31 15:10
- 物理学 誘導起電力について 誘導起電力Vはファラデーの法則より、φを回路を貫く磁束として、 V=-(dφ)/ 1 2023/03/01 05:13
- 物理学 角速度ベクトルにつきまして 3 2022/08/09 15:44
- その他(プログラミング・Web制作) 物理の斜方投射の目盛り線とx軸、y軸の追加について 3 2023/05/26 21:11
- 物理学 電磁気学 磁気物理学 磁気モーメント 2 2022/10/18 22:19
- 物理学 面積速度一定の法則を(1/2)r v sinθを使って証明する方法 2 2023/06/25 12:43
- 物理学 相対論的運動方程式 1 2022/07/04 06:20
このQ&Aを見た人はこんなQ&Aも見ています
-
今年はじめたいことは?
今年はこれをはじめたい!ということを教えてください!
-
歳とったな〜〜と思ったことは?
歳とったな〜〜〜、老いたな〜〜と思った具体的な瞬間はありますか?
-
あなたの「プチ贅沢」はなんですか?
お仕事や勉強などを頑張った自分へのご褒美としてやっている「プチ贅沢」があったら教えてください。
-
あなたの人生で一番ピンチに陥った瞬間は?
これまでの人生で今振り返ると「あの時、1番ピンチだったなぁ...」という瞬間はありますか?
-
【お題】斜め上を行くスキー場にありがちなこと
運営も客も一流を通り越して斜め上を行くスキー場にありがちなことを教えて下さい。
-
加速度と角加速度の関係について
物理学
-
回転運動での角速度・角加速度の違い 物理初心者です
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一番好きなみそ汁の具材は?
- ・泣きながら食べたご飯の思い出
- ・「これはヤバかったな」という遅刻エピソード
- ・初めて自分の家と他人の家が違う、と意識した時
- ・いちばん失敗した人決定戦
- ・思い出すきっかけは 音楽?におい?景色?
- ・あなたなりのストレス発散方法を教えてください!
- ・もし10億円当たったら何に使いますか?
- ・何回やってもうまくいかないことは?
- ・今年はじめたいことは?
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
PDF-XChange Viewerで、回転し...
-
図・図形の回転ハンドルが出ない
-
モータの回転数と速度の関係
-
エクセルやワードに挿入したイ...
-
機械系の授業で「P/R」という単...
-
単位の換算について
-
エクセルで図の回転
-
REVERSE(逆転)の反対語は何に...
-
カムの駆動トルク
-
パルスからrpmを求めたいです
-
パワーポイントに貼り付けた画...
-
ネジ締付速度と対象部にかかる...
-
Power Point へ挿入した図が回...
-
換気扇はメーカーによって回転...
-
新幹線での座席回転について
-
回転できる図形と回転できない...
-
次の計算方法を教えてください...
-
Excel グループ化した図形が回...
-
自転車のタイヤを回すジャイロ...
-
機械で、トルクオーバー異常っ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
PDF-XChange Viewerで、回転し...
-
図・図形の回転ハンドルが出ない
-
新幹線での座席回転について
-
パワーポイントに貼り付けた画...
-
エクセルで図の回転
-
REVERSE(逆転)の反対語は何に...
-
単位の換算について
-
機械系の授業で「P/R」という単...
-
モータの回転数と速度の関係
-
換気扇はメーカーによって回転...
-
エクセルやワードに挿入したイ...
-
カムの駆動トルク
-
回転できる図形と回転できない...
-
ヨーヨーが戻る原理について教...
-
直接基礎設計における回転ばね定数
-
Power Point へ挿入した図が回...
-
ネジ締付速度と対象部にかかる...
-
円柱と円盤を固定する方法
-
パルスからrpmを求めたいです
-
考えるカラス 車輪が倒れない理由
おすすめ情報