ついに夏本番!さぁ、家族でキャンプに行くぞ! >>

∇・(∇×а)=0を証明してくだい明日までなんです

このQ&Aに関連する最新のQ&A

A 回答 (5件)

∇・(∇×а)


=∇・
|    i    j   k     |
|  ∂/∂x1 ∂/∂x2  ∂/∂x2  |
| a1      a2     a3 |

=∇・
「 i(∂a3/∂x2- ∂a2/∂x3) 
 +j(-∂a3/∂x1+∂a1/∂x3)
  k(∂a2/∂x1- ∂a1/∂x2)」

=(∂^2(a3)/(∂x1∂x2)- ∂^2(a2)/(∂x1∂x3))
(-∂^2(a3)/(∂x2∂x1)+∂^2(a1)/(∂x2∂x3))
(∂^2(a2)/(∂x3∂x1)- ∂^2(a1)/(∂x3∂x2))
    • good
    • 0
この回答へのお礼

ありがとうございますとても助かりますました

お礼日時:2009/05/14 01:15

A・(B×C)=-B・(A×C)・・・・・(1)


の公式がある。

これに、ベクトル解析∇・(∇×а)を適用する。
A---->∇
B---->∇
C---->a

∇・(∇×a)=-∇・(∇×a)・・・・・(2)

∇・(∇×a)+∇・(∇×a)=0・・・・・(3)

2∇・(∇×a)=0・・・・・・・・・(4)

∇・(∇×a)=0・・・・・・・・・・・(5)
    • good
    • 0

∇・(∇×а) = εijk・∂i・aj・∂k


       = -εkji・∂i・aj・∂k
       = -εijk・∂k・aj・∂i
       = -εijk・∂i・aj・∂k
より、 εijk・∂i・aj・∂k = 0 です。
    • good
    • 0

No.2の人が答えてしまっているので、折角なので・・・



通常のベクトル計算の公式
A・(B×C)= C・(A×B)=(A×B)・Cにならって
解く方法を提案します。

∇・(∇×a)ですが、∇はaに作用して、∇どうしは影響しあわないことに着目します。
するとA・(B×C)= C・(A×B)=(A×B)・Cにならって
∇・(∇×a) = <a・(∇×∇)> =(∇×∇)・a
とできます。ここで<>は各項のaを一番右側に並べる操作を表すとします。
つまり、例えば
<a_x ∂_y ∂_z>=∂_y ∂_z a_x
のようにするということです。

∇×∇=0なので
(つまり一般に∂_x ∂_y - ∂_y ∂_x = 0のようなことが成り立つので)

∇・(∇×a) = <a・(∇×∇)> =(∇×∇)・a = 0

となります。
    • good
    • 0

ヒントだけ申し上げるならば、この計算に近道はありません。


定義に従って、順番に愚直に丁寧に計算するしかありません。
頑張って下さい。本気で取りかかれば、意外と簡単です。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q∇・∇×A=0などの恒等式の球座標系での証明について。ベクトル解析

初質問です。
大学で電磁気について学んでいます。
授業において直角座標系で
∇・∇×A=divrotA=0・・・(1)
∇×∇φ=rotgradφ=0・・・(2)
※A=Axi+Ayj+Azk
 φ・・・スカラ
の証明をしました。
ここで疑問に思ったことがあり、球座標系で(1)、(2)の証明はどのようにやるのかということです。
自分で試みたのですが、計算の方法がイマイチ分からず、ネットや参考書で探してみたのですが見つかりませんでした。
どなたかご指導お願いします。

Aベストアンサー

x=r・sinθ・cosφなどと極座標で表わしておき
dx、dy、dzのそれぞれをdr、dθ、dφで表わします。
dx=sinθ・cosφdr+r・cosθ・cosφdθ-r・sinθ・sinφdφ のように。

そして、∂(x,y,z)/∂(r,θ,φ)より、
∂/∂r、∂/∂θ、∂/∂φを∂/∂x、∂/∂y、∂/∂zで表わします。

逆行列を取ると
∂/∂x、∂/∂y、∂/∂zが∂/∂r、∂/∂θ、∂/∂φで表わされます。

(1)については、
∇×A
=|  i     j     k   |
|∂/∂x ∂/∂y ∂/∂z|
| Ax    Ay     Az  |
の∂/∂x、∂/∂y、∂/∂zに∂/∂r、∂/∂θ、∂/∂φで表わしたものを
代入し、その結果に∂/∂r、∂/∂θ、∂/∂φで表わした∇・を作用させ
れば∇・∇×Aが求まります。

(2)も同じように、∂/∂x、∂/∂y、∂/∂zを∂/∂r、∂/∂θ、∂/∂φで
表わすことにより求められます。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qベクトル場の面積分に関してです

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

Aベストアンサー

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑...続きを読む

Q単位法線ベクトルの問題なんですが。。。

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

Aベストアンサー

未消化のgrad fを使わなくても以下のように出来ます。
いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14

Q無限に長い円筒の側面上に電荷が一様な面密度

半径Rの無限に長い円筒の側面上に電荷が一様な面密度σで分布しているとき、ガウスの法則を用いて生じた電場を求めよ。

以下参考書の解説
 閉曲面Sとして、電荷の分布する円筒と同軸の半径r、長さLの円筒面を選ぶ。Sについての電場Eの面積分はE2πrL
 Sの内部に含まれる電荷はr<Rのとき0、r >Rのときσ2πRL
 よって、ガウスの法則より、E=0(r<R)、σR/εr(r >R)

なぜ、Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?
なぜ、E=σR/εr(r >R)なんですか?

詳しい解説お願いします。

Aベストアンサー

>Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?

問題の定義どおりです。

面密度 x 円筒の表面積 = σ x 2πRL

>なぜ、E=σR/εr(r >R)なんですか?

ガウスの法則から

電場=電荷量/(ε局面Sの側面積) = σ x 2πRL/(ε2πrL)=σR/(εr)

Qgrad、div、∇

物理なのか、数学なのかという感じなのですが・・・。

まず、grad、div、∇について、分かりやすく教えていただけませんか?。
それから、たとえば、圧力pがあったとして、「grad p」の物理的意味を教えて頂けるとうれしいです。

数学も物理も苦手なので、詳しく分かりやすく教えて頂けると幸いです。

よろしくお願い致します。

Aベストアンサー

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる場所から
水平方向に 10km 動いたってあまり気圧は変わりませんが,
空の方向に 10km 動けばエベレスト
(最近は,チョモランマとかサガルマータとか呼ぶかな)
より高くなって,気圧はうんと下がっちゃいます.
で,y,z 方向には全く動かず,x 方向にだけ動いたとします.
このときの p の変化の割合は,偏微分を使って ∂p(x,y,z) / ∂x ですね.
同様に,x,z を固定して y だけ動かせば,変化の割合は ∂p(x,y,z) / ∂y,
x,y を固定して z だけ動かせば,変化の割合は ∂p(x,y,z) / ∂z.
つまり,以上の3つの偏微分で変化の様子がわかります.
ばらばらに3つ扱ってもいいですが,
ベクトル表示にして
x 成分が ∂p(x,y,z) / ∂x,
y 成分が ∂p(x,y,z) / ∂y,
z 成分が ∂p(x,y,z) / ∂z,
というベクトルにしたのが grad p です.
ベクトルにしておくと,
表示が簡単なことの他にもいろいろ便利なことがあります.

なお,creol さんの回答ははちょっと混乱されているようです.
p は圧力(の強さ)そのもの,grad p は p の変化の割合です.
その場所での圧力は p です.

div は,creol さんも書かれているように,発散です.
極限値が発散する,などの発散とは全く違いますので,念のため.
例えば,水流中に仮想的な直方体を考えてください.
水流は流れの方向がありますからベクトル量ですね.
で,場所にもよりますから,j(x,y,z) と書きましょう.
テキストファイルじゃうまく書けないですが,j はベクトルです.
この直方体の面を通って単位時間あたりに流れ出ていく水量(流出量)が
本質的に div j です(本当はちょっと修正がいる,後述).
直方体の6面分全部考えてくださいよ.
水量ですから,スカラー量ですね.
え? 流出量ばかりじゃ直方体の中の水がどんどん減っちゃう?
ええ,それでいいんです.
つまり,div j は直方体の中の水量ρ
(スカラー量,本当は密度ですが)
の単位時間あたりの減少分を表しています.
式で書くなら, div j = - ∂ρ / ∂t です.
右辺のマイナスは減少だからついているんです.
ふつうの水流(例えば,川なんか)なら?
div j の計算のときに,流出量をプラスとして考えているので,
入ってくる分(流入量)はマイナスで考えてください.
ごくふつうに川が流れているとき,
上流の方から流入量と,
下流側への流出量は同じですよね.
そうすると,プラマイうち消して,div j = 0,
直方体の中の水量は時間変化しません.

え,直方体の大きさ?
あ,それはですね,十分小さくとってください.
小さくとれば,流入量も流出量も小さくなっちゃう?
実は,正味の流出量を直方体の体積で割って
直方体を小さくした極限が本当の div j です
ρが本当は密度だと言ったのもこういうところと関係があります.

微分で表現すれば
div j(x,y,z)
= ∂jx(x,y,z) / ∂x + ∂jy(x,y,z) / ∂y + ∂jz(x,y,z) / ∂z
です.
jx は j の x 成分,他も同様.


∇の記号は creol さんの書かれているとおり.
読み方は「ナブラ」(nabla) です.
ちょっと変わった名前ですが,
竪琴(形が似ている)のギリシヤ語名から来ています.

grad,div,と並んでベクトル解析でよく出てくるものに
rot (rotation,回転)があります.

わかりやすく,ということで回答してみました.

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる...続きを読む

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Qワード使用中 (応答なし)と出て動かない

スゴく困ってます。

ワード使用中 (応答なし)と出て動かなくなりました。

砂時計のアイコンになって ウンともスンともいいません
このままでは保存せずに切らないといけない状態になりそうです。

長文を打っているんですけど 上書き保存していないんです。

なんとか保存したいのですが どうしたらいいでしょうか?

宜しくお願いします。

Aベストアンサー

よくあることで困ったことです・・・・

まず、ハードディスクの読み書きで時間を食われていないか、ハードディスクのアクセスランプを見て確認します。ランプが点滅していたら、気長に待ちます。ハードディスクの空き容量不足などで、ページファイルという、メモリに相当するハードディスクにアクセスが集中していたら、戻るまでに20~30分くらい待つこともあります。

他のアプリケーションが正常に動作するならば、Alt-Tabを押してみてください。ワードの他のダイアログが出ていて待ち状態になっていれば、ダイアログを終了させます。他のアプリケーションが重い場合(SkypeやFirefox,Internet Explorer, Googleデスクトップなどが頻繁に重くなります)それらを終了させます。

それでも回復しなければ・・・画面を最低限保存します。
デジカメでもキャプチャソフトでもいいです。

↓は原始的な方法ですが結構使えます。画面がでている場合は、ですが。

1. PrtSc(プリントスクリーン)ボタンで画面をキャプチャする
 (画像がクリップボードにコピーされる)
2. スタート>プログラム>アクセサリ>ペイントを起動する
3. 画像を貼り付ける(Ctrl-v)
4. 保存する

ということをした後で、Wordをタスクマネージャ(Ctrl-Alt-Delで呼び出す)から終了させます。

なお、Word2003以降であれば、不正終了されても助かることが多いです。
次にWordを起動すると、編集中だった文書を回復するかどうか、左側にメニューが出てきますので、そういうときは運がよいです、すぐ保存しておいてください。

よくあることで困ったことです・・・・

まず、ハードディスクの読み書きで時間を食われていないか、ハードディスクのアクセスランプを見て確認します。ランプが点滅していたら、気長に待ちます。ハードディスクの空き容量不足などで、ページファイルという、メモリに相当するハードディスクにアクセスが集中していたら、戻るまでに20~30分くらい待つこともあります。

他のアプリケーションが正常に動作するならば、Alt-Tabを押してみてください。ワードの他のダイアログが出ていて待ち状態になっていれば、...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報