
No.2ベストアンサー
- 回答日時:
siegmund と申します.
大学で物理の研究と教育をやっています.
平行平板コンデンサーについては,理想的な場合は内部の電場 E は極板間距離によりません.
したがって極板間引力 F も極板間距離によりません.
だから,単に掛け算で FΔx でよい,というのが nsz さんのご回答で,
今の問題に関しては全くその通りです.
では,もし F が x に依存するようだったら(つまり,F(x) となっていたら)どうするのか?
お手上げか?
いやいや,そのときも F(x)Δx でいいのです.
x は考えている場所での x です.
そういえば,他の話で場所に依存する場合も F(x)Δx のように書いているのを見たことがあるぞ.
以下,そのことを説明しましょう.
大変重要な内容を含んでいます.
F(x) の原始関数を G(x) と書きましょう.
当然
(1) G'(x) = F(x)
ですね.
そうすると
(2) ΔU = ∫{x→x+Δx} F(x) dx = G(x+Δx) - G(x)
です.
(2)の右辺はどこかで見たような式の一部分ですよね.
そう,微分操作の定義
(3) G'(x) = lim{Δx→0} { G(x+Δx) - G(x)}/Δx
の一部分です.
つまり,Δx が十分小さいときは
(4) G(x+Δx) - G(x) = G'(x) Δx
のように思ってよろしい.
(4)を(2)に代入して(1)を使えば,めでたく
(5) ΔU = F(x)Δx
になります.
(3)はいいとして,(4)のように書いて本当によいのか?
実は
(4') G(x+Δx) - G(x) = G'(x) Δx + G''(x) (Δx)^2/2 + ・・・
であることが知られています.
こういう展開をテーラー展開と呼んでいます.
(4')を使えば,(5)に相当する式は
(5') ΔU = F(x)Δx + F'(x) (Δx)^2/2 + ・・・
になりますが,Δx が十分小さいと思えば右辺第1項だけとれば十分で,
結局(5)に帰着します.
なお,Δx が小さいと言っても,ゼロとしてしまっては何も残りません.
いくらでも小さくできるが有限であってゼロではない,と思うところが大事です.
こういう考え方は,曲線と x 軸の間の面積を求めるときにも使われています.
最も単純な長方形なら,面積は (高さ)×(幅).
幅方向に動いていくときに高さが変わったらどうするか?
幅を十分小さくしてΔxにしてその部分の短冊型の面積が f(x) Δx,
これをすべてのΔx について足しあわせて ∫ f(x) dx を曲線下の面積とするわけです.
短冊型の面積を ∫{x→x+Δx} f(x) dx とはしませんね.
まとめると,
【微小な量に関して最低次の寄与を拾い出す】
というのが最も重要なところです.
なかなか本にはこういうふうに書いてはありませんね.
なお,上の話は数学的厳密さは犠牲にして直感的にわかりやすく説明しました.
この回答へのお礼
お礼日時:2009/08/23 17:18
素晴らしくわかりやすいですね。
テーラー展開はどっかの本で証明を見たことがあります。
納得です。早く大学入りたいw
ありがとうございました。
No.1
- 回答日時:
面積が十分に大きい、つまり端を無視できるコンデンサを考えて
いるために、平行電極間に存在する電気力線は、それらの電極平面に
垂直になります。
電気力線の数(密度)は電荷量と面積で決まっていますから、一方
の電極から出て、他方に吸い込まれる電気力線の数は、電極間距離
には依存しないということになります。
電極が受ける力は電気力線の数に比例しているので、上記の条件下
では引力は電極間距離によらず一定となります。
なお、実在のコンデンサでは、あまり距離を離しすぎると面積が
十分に大きいという条件が成立しなくなりますので、上記近似は
成立しなくなります。その場合、式変形では解がでない恐れが高く、
数値計算に頼ることになるでしょう。
物理学では厳密さを求めることも重要ですが、同時に、式変形で
解が出せるように上手い近似をすることも重要です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
高校物理コンデンサーについて
-
コンデンサーにかかる電圧が負
-
コンデンサー間に挿入された誘...
-
【物理】 コンデンサーについて...
-
コンデンサーの両極板の電荷が...
-
コンデンサーについて
-
平行平板コンデンサーの間隔を...
-
高校物理の電位についての問題
-
電位差(電圧)とアースについて
-
コンデンサーの電気量が不変の...
-
(高校物理) (1)の解答で電池の...
-
高校物理、コンデンサー、誘電体
-
この回路の端子abの電位差を求...
-
コンデンサの難問
-
【電気】 電気回路の問題で、電...
-
コンデンサーの極板間を広げる...
-
誘電体を差し込んだコンデンサ...
-
E面とH面の指向性
-
電流がI=dQ/dtやI=-d...
-
人体をコンデンサとみなせる理由
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報