【無料配信♪】Renta !全タテコミ作品第1話

エネルギー積分の意味
 エネルギー積分を導くのに
∫Fdx = ∫m・a・dx ・・・・・・・・・・・・・・(1)
   = ∫m・dv/dt・dx/dt・dt
   = ∫m・dv/dt・v・dt・・・・・・・・・(2)
   = ∫m・v・dv ・・・・・・・・・・・・・・(3)
   = 1/2m・v^2+C
のような解説が参考書に載っていました。置換積分を使えば形式的にこうなるのはわかるのですが、本来の(1)の積分の意味がよくわかりません。左辺は仕事を表すのは理解できますが、右辺は素直に解釈すれば「加速度を空間で積分?」ということになって、なぜそれが運動エネルギーにつながるかがどうもイメージが湧かないのです。イメージが湧かないといえば変形の途中で表れる(3)もそうで、数学的には単なる1次関数の積分ですが、物理的には「速度を速度で積分?」ということになりそうで、これまたよくわかりません。(3)は
 d(v/2)^2/dt = v・dv/dt
を(2)に代入すれば
 ∫m・d(v/2)^2/dt・dt = 1/2m・v^2+C
となり、(3)になるのを避けられますが単に数式をこね回しているだけのような気もします。
 加速度を空間で積分、速度を速度で積分というのはどうすれば納得できるのでしょう。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

ああ、積分の意味ですね。



>∫Fdx = ∫m・a・dx ・・・・・・・・・・・・・・(1)

この式からスタートするのが悪いのです。
本来は、微小な仕事がΔF↑・Δx↑で、
これを微小時間の変化と考えると

ΔF↑・(Δx↑/Δt)Δt 
→ dF↑・(dx↑/dt)dt = dF↑・v↑dt

となるので、これを時間で積分した

∫F↑・v↑dt = ∫m a↑・v↑ dt

からスタートします。

a↑=d(v↑)/dtなので 

a↑・v↑ dt = v↑・d(v↑)/dt dt = (1/2)d(v^2)/dt dt = (1/2) d(v^2)

から左辺の積分はただちに(1/2)mv^2であることがみちびかれ、

∫[A->B] F↑・v↑dt = (1/2)mv(B)^2 - (1/2)mv(A)^2

となります。

力が保存力の場合はF↑= F↑(r↑)で、v↑=d(r↑)/dtなので 左辺は

∫[A->B] F↑・dr↑

になります。
    • good
    • 1

仕事の結果が何になるかを運動方程式から導き,それに「運動エネルギーの変化」という定義を与えたのですから,右辺の数学に対して数学以上の意味を追求しようとするのは,あまり建設的でないような気がします。



運動方程式:運動量の時間変化の割合 = 力

運動方程式の時間積分:運動量変化 = 力積

力や質量概念が先見的にあったとして,質量×速度という量が力との関係において重要な意味のある量であることがわかった。そこでこれを「運動量」と呼ぶことにした。

運動方程式の経路積分:運動エネルギーの変化 = 仕事

物体の変位において力がなす働きの定量化として,仕事の概念が確立され,運動方程式によってその 結果が1/2mv^2の変化に相当することがわかった。そこでこれを「運動エネルギー」と呼ぶことにした。

基本は,運動方程式にさかのぼるわけですから,運動方程式を認めるのならば,あとは数学的に一直線です。もう一度,整理すると,

力 =質量に対して加速度を生じさせる「はたらき」=質量×加速度
  →運動方程式により質量に対して速度を変化させるものと定義した。

力積=時間において力がなす「はたらき」の定量化
  →運動方程式によれば「運動量」を変化させるものと定義できる。

仕事=変位において力がなす「はたらき」の定量化
  →運動方程式によれば「運動エネルギー」を変化させるものと定義できる。

「数式をこね回している」と割り切ったらどうでしょう。こんなん出ましたー…といって,重要な概念である「運動量」や「運動エネルギー」を人間は発明してきたのです(歴史的な順序は逆かもしれませんが)。

運動方程式こそが基本法則であり,それ以上でも以下でもない。法則の形を変えているに過ぎないのですから,途中計算に数学以上の意味を問うのは私は無意味だと思います。
    • good
    • 0
この回答へのお礼

 回答ありがとうございます。
> 運動方程式こそが基本法則であり,それ以上でも以下でもない。法則の形を変えているに過ぎない
> のですから,途中計算に数学以上の意味を問うのは私は無意味だと思います。
 ふーむ、なるほど。お答えいただいた内容をじっくりと考えて今後の勉強の指針にしたいと思います。でも、こういうことに疑問を持つ人って少ないのですかねえ。

お礼日時:2010/05/16 18:53

積分を外した



F = ma

は運動方程式です。運動方程式の両辺をAからBまで積分してみると、

∫[A->B] Fdx = (1/2)m・v(B)^2 - (1/2)m・v(A)^2

となり、AからBまでなされた仕事が(1/2)mv^2という量の差になることが示されます。
そこで、(1/2)mv^2に運動エネルギーという名前をつけると

A-B間でなされた仕事はその間の運動エネルギーの差に等しい

という法則が出てきます。
これを広義のエネルギー保存則といったりします。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q「エネルギー積分を使って導け」とのことなんですが・・・

私は物理学に関しては初心者なので、稚拙な表現については多少目をつぶっていただければ光栄です。



鉛直上向きのZ軸を考える一次元運動で、静止からの落下について考える。
質量がmの質点を、t=0で高さZ=hの場所に静止させてから静かに落下させる。
・・・・・・といった条件のもとで、最終的には質点のもつエネルギーについて、運動エネルギーをTとして以下のような式となるそうです。

   T + mgZ = T。 + mgZ。 = 0 + mgh = E

 これを「エネルギー積分」を使って導け、というものなのですが、
 いったいどのようにすればよいのでしょう。
 理化学辞典や物理学の辞典で「エネルギー積分」という言葉について は調べましたが、そのような単語は載っていませんでした。ますます 謎は深まるばかりです。

 どのような式を立てればいいのかが全くわかりません。
 どなたか、模範的な解答あるいは解説をよろしくお願いいたします。 

Aベストアンサー

「エネルギー積分」について説明します。力学でエネルギー積分の導き方は定石があります。たとえば、運動方程式が、
m(d^2/dt^2)z=f
であるとき、この式の両辺にdz/dtを掛けると、
1/2*m*d/dt(dz/dt)^2=fdz/dt
という式が導かれるはずです。この両辺を変数tで積分したとき、左辺はTになりますね。そして、積分定数をEとします。これがエネルギー積分というものです。

以上のことを参考にして、質問された問題について、ご自分で計算してみて下さい。

Q空気抵抗の式について

空気抵抗は次式で求められるそうですが、なぜ2で除すのか理解できません。
      F=P*C*S*V^2/2
F:空気抵抗、P:空気密度、C:空気抵抗係数
S:投影面積、V:速度

私なりに考えますと、投影面積(S)に速度(V)をかけてさらに空気密度をかけることで移動した空気の質量が求られ(S*V*P)、その空気は毎秒静止状態から速度Vまで加速されるので加速度がVとなり、力は質量と加速度の積より空気の密度*加速度となり(P*S*V^2)、結局Fは空気抵抗係数を式に加えることで、
      F=P*C*S*V^2
となり、2で除する必要がない気がするのですが・・・
宜しくお願い致します。

Aベストアンサー

 
 
>> 物体は1秒間にVm進み、気体のほうは1秒間に1/2Vm進む、つまり物体に追い越される。「物体が気体を追い越しながら気体を押す」という点が理解し難い。 <<

 (申し訳ありません!この質問忘れてましたご免なさい。)


 メートルとか秒という巨視的なスケールで考えずに、気流の微小体積部分が微小時間の間に‥とイメージしましょう。物理学全般の定石です。

 「追い越しながら加速」ができるのは、物体の固体摩擦と流体の粘性摩擦があるためです。お互いがこすれ合うだけで相手を加速/減速できますよね。 流体の中では 微細部分どうしもこすれ合ってます。だから物体の表面からもらった速度が 広い範囲に次々と分配されて広がって薄まってゆきます。

 No.4の回答も微小な速度変化のつもりで書きました。(巨視的なスケールで考えてしまうと、V は直線変化と限らないので係数が 1/2 である説明になりません。)
これの元ネタは 力学エネルギの定義 です; 力Fで動いた距離dxの積 Fdx がエネルギの定義、 微小距離 dx の間の速度変化は直線と見なされるので時間積分して距離を求めると係数 1/2 が登場する‥というやつです。 で、ベルヌーイの定理の式は エネルギ保存の法則の式 そのまんまですから 係数 1/2 も素のママで登場してます。それが空気抵抗の式にも引き継がれてる、、、という系図です。



 余談;
 空気抵抗は、速度の1乗で効く「粘性抵抗」と、速度の2乗で効く「慣性抵抗」があります。 どちらも運動量保存の法則によるものです。 前者は 流体が物体表面をなでて通る際に物体の運動量を分与され、それが流体分子同士のランダム衝突でバトンタッチされて物体表面からどんどんバケツリレー式に汲み出されてしまう現象です。 後者は 流体分子が物体と正面衝突して速度V に加速される際に物体側の運動量がモロに減る現象です。
 大胆(かつ不正確)に例えれば、槍のような棒が飛んでる場合、前者は棒の側面を空気がなでる抵抗、後者は棒の正面の面積が空気と正面衝突する抵抗です。
 後者の場合、あまりに急な衝突で 周辺とのやり取りが間に合わないと いわゆる「断熱圧縮」になって空気が高温になります。スペースシャトルで、その高温空気が機体の内部に侵入し、金属が熔けて空中分解に至って乗員が死亡した事故が有名です。(事故当時 「 超音速で空気とこすれたための摩擦による熱が原因 」 という報道説明がよくありました。クルマのブレーキ過熱などの日常経験からの演繹でしょうが、流体力学的に正しいのは粘性抵抗の方ではなく慣性抵抗。後者が圧倒的に大きいです。超音速ゆえ断熱圧縮になり物体先端に集中しました。)

http://oshiete1.goo.ne.jp/kotaeru.php3?q=908588
http://oshiete1.goo.ne.jp/kotaeru.php3?q=901153

 もし流体に摩擦が無かったら; 上記の「粘性抵抗」も「慣性抵抗」も「揚力」も起きません。
 
 

 
 
>> 物体は1秒間にVm進み、気体のほうは1秒間に1/2Vm進む、つまり物体に追い越される。「物体が気体を追い越しながら気体を押す」という点が理解し難い。 <<

 (申し訳ありません!この質問忘れてましたご免なさい。)


 メートルとか秒という巨視的なスケールで考えずに、気流の微小体積部分が微小時間の間に‥とイメージしましょう。物理学全般の定石です。

 「追い越しながら加速」ができるのは、物体の固体摩擦と流体の粘性摩擦があるためです。お互いがこすれ合うだけで相手を...続きを読む

Q運動方程式の微分積分の計算

 運動方程式の微分積分の計算方法がわかりません。詳しく教えてもらえると嬉しいです。よろしく、お願いします。以下はテキストの抜粋です。

m・dv/dt = F(r)
両辺に速度 v=dr/dt をかけると
mv・dv/dt = F(r)・dr/dt
となる。ここで、
v・dv/dt = d/dt(1/2v^2)  ← この式変形が、分かりません。1/2も不明です。
と変形できるので、上の式は
d/dt [1/2 mv^2(t)] = F・dr(t)/dt

Aベストアンサー

積の微分の公式
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
をつかっているだけです。

v^2=v・v
v'=dv/dt

です。

d/dt(v^2)=(v^2)'=(v・v)'=v'v+vv'=2vv'=2v・dv/dt

だから、

v・dv/dt=1/2・d/dt(v^2)=d/dt(1/2v^2)

でしよう。

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Q人間のDNAの長さについて

人間の1つの細胞に含まれるDNAの長さは1.8mとか、2mとか言われていますが、これは、どうやって導き出したのですか?
分かりやすいように、計算過程なども添えてくれるとありがたいです。

Aベストアンサー

細かい値は、条件や測定方法によって違うと思いますが、必要なパラメーターが次のような値とすると、

ヒトゲノムのサイズ(半数体ゲノム)30億 bp (塩基対)
2倍体の細胞一個あたり 60億 bp (6x10^9 bp)
1ピッチ(DNAの二重らせんの一回転、10塩基対)の長さ3.4 nm (ナノメーター)= 3.4x10^-9 m

細胞一個あたりのbp x 1ピッチの長さ / 1ピッチのbpで
6x10^9 bp x 3.4x10^-9 m/10 bp = 2.04 m

Q角速度のベクトルの方向は何故回転軸なんでしょうか

角速度のベクトルの方向は、回転軸になるというのが納得できません。
例えば、極座標系で、ある粒子がZ軸を中心に右周りに半径を変えず回転していたとして、
位置ベクトルが(s,0,z)だとして、
速度ベクトルは(ds/dt, s*(dθ/dt),dz/dt)=(0,s*(dθ/dt),0)になると思うのですが、
この点からしてもZ軸については速度が0のはずです。
粒子が動いているのは勿論θ方向なので、直感的に(0,Ω,0)がしっくりきます。
なのに、速度ベクトルΩが何故(0,0,Ω)になってしまうんでしょうか。。
どなたか分かる方教えてください。よろしくお願いします。

Aベストアンサー

たんに、約束事です。
回転系のベクトルは、右ねじが回転した時に進む方向にとる。という決まりがあるだけのことで、実際の動きとは関係ありません。
こういう向きに決めておくと、なにかと計算上便利ということもありますが。

Q単位体積重量と密度の違い

 単位体積重量と密度ってどう違うのでしょうか?

 密度=ρ で、単位体積重量=ρg
 
 というだけで、ただ重力加速度が
 かけられているだけという意味な
 のでしょうか?

 工学関係の教科書を読んでいると、どちらも
 よくでてきますが、意味的になにか違うのでしょうか?

Aベストアンサー

物理屋の siegmund です.

密度は (質量)/(体積),すなわち単位体積あたりの質量です.
質量とは,物質の量.
SI単位なら,kg が単位です.

重さ(重量)は,(通常は地球上で)物体に作用する重力の大きさで,
その物体の質量と重力加速度gとの積に等しい.
力の次元をもった量で,SI単位なら,N(ニュートン)が単位です.
N = kg・m・s^{-2}
したがって,単位体積あたり重量は,N/m^3 がSI単位です.

結果的には質問の文にあるように,両者の違いはgがかかっているかどうかです.

物質を月に持っていくと,物質の量は変わらないので質量は不変ですが,
重力加速度が変わるので重量の方は約1/6になります.

9766 さんの比重はちょっと誤解があるようです.
比重は,ある体積の物質の質量を同体積の標準物質の質量で割ったもの.
固体や液体に対する標準物質は,通常は4℃の水ということになっています.
質量÷質量ですから,比重は単位のない量です.
同じ場所で測ればその物質と標準物質の重さの比をとってもよいので
(gがかかるだけだから,割り算の分母分子でgはキャンセルする),
比重という名がつけられたのです.
水は 1 cm^3 でほぼ1gですから,密度を g/cm^3 単位で表すと,
密度の数値と比重の数値は実用上は同じになります.

物理屋の siegmund です.

密度は (質量)/(体積),すなわち単位体積あたりの質量です.
質量とは,物質の量.
SI単位なら,kg が単位です.

重さ(重量)は,(通常は地球上で)物体に作用する重力の大きさで,
その物体の質量と重力加速度gとの積に等しい.
力の次元をもった量で,SI単位なら,N(ニュートン)が単位です.
N = kg・m・s^{-2}
したがって,単位体積あたり重量は,N/m^3 がSI単位です.

結果的には質問の文にあるように,両者の違いはgがかかっているかどうかです.

物質を...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q双極子モーメントの求め方について

薬学1回生です。有機化学の教科書で、双極子モーメントというものがあるのですが、求め方がよくわかりません。教科書にはμ=q×r(q:電荷、r:両電荷間の距離)と書いてあります。
いったいどこを見て電荷や両電荷間の距離がわかるのですか?表などがあるのでしょうか?
お分かりの方がいらっしゃいましたら、詳しく教えていただけるととてもありがたいです。

Aベストアンサー

>いったいどこを見て電荷や両電荷間の距離がわかるのですか?表などがあるのでしょうか?

薬学1回生ということなので、これからいろいろ知識を獲得していかれることと思います。さて、直接的な答えにはなりませんが、参考URLの「電気陰性度と極性」のところは一読の価値があると思います。また、次のサイトも覗いてみてください。簡単な分子の双極子モーメントが与えられていたり、分子の形と双極子モーメントの関係などが載っています。
 http://www.keirinkan.com/
   ↓
  化学(2)
   ↓
 共有結合によって結びついた物質
以上、ご参考まで。

参考URL:http://www.shse.u-hyogo.ac.jp/kumagai/eac/chem/lec6-2.html

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング