No.2ベストアンサー
- 回答日時:
おはようございます。
「交点の数」と同じような問題ですね。
三角形には 3つの辺が必要なので、その 3辺(3本の直線)を選ぶということなのですが。
手順を追って考えてみましょう。
1) まずは直線 1本を選びます。(これを 直線:L1とします)
この直線には、残り 7本の直線との交点があります。(∵いずれの 2本も平行ではないから、必ず交わる)
そして、この直線上の交点は 7つあります。(∵いずれの 3本も 1点では交わらないから)
2) 7つの交点から 2つ点を選びます。
これは、残り 2本の直線(L2, L3)を選んでいることと同じです。
これら 2本の直線も必ず交わりますから、三角形ができあがります。
3) 上で選ばれた三角形は、1)で L2を選ぶ場合、L3を選ぶ場合、それぞれで重複してしまいます。
よって、その分を除外しなければなりません。
これを計算式にすると、
8C7× 7C2÷ 3= 8!/(7!1!)× 7!/(2!5!)÷ 3= 8C3とおり
と一致します。
このような数え方でもいいのですが、
3本直線を選べば必ず三角形ができあがることがわかったので、単純に 8C3とおりとしても構わないのです。
1)のところで、「いずれの・・・」の 2つの条件が入ってくるので、このように考えることができることになります。
No.1
- 回答日時:
とりあえず三角形を作るには3本の直線が必要です
これはいいですよね?
3本の直線の選び方が8C3であることは理解できると思います
しかしここから少し考えなければいけません
3本直線を選んだが三角形ができないことが起こるかを考えます
i)直線が交わらない
つまり平行な2直線を選んでは三角形ができるわけがありません
よって平行でない直線を3つ選ぶ必要があります
しかし、問題にいずれの2本も平行でないと書いてあるため問題ありません
では平行でなければ三角形が出来るでしょうか?
ii)3直線が1点で交わる
このとき三角形ができず点になってしまいます
しかしこれもいずれの3本も1点で交わることがないすると書いてあるため問題なし
よって答えは最初に出した8C3のままでいいのです
問題によっては1組だけ平行であるなど条件がついている場合もあるので気をつけましょう
確かに「8本の直線から3本を取り出す組み合わせなので、8C3」というだけでは不十分だと思います
>問題によっては1組だけ平行であるなど条件がついている場合もあるので気をつけましょう
(2)がまさにそうです^^ありがとうございました
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 三角形の3つの頂点から出る3本の直線が1点で交わる条件で 「少なくとも1本の直線は、角の二等分線であ 2 2023/02/21 21:24
- 数学 数学 三角形の3つの頂点から出る3本の直線が1点で交わる この場合3本の線は「角の二等分線」以外あり 2 2023/02/21 21:01
- 数学 (問題) xy平面において,6本の直線x=k(k=O, 1, 2, 3, 4, 5)のうちの2本と, 3 2023/03/19 21:56
- 数学 平面上において,4本だけが互いに平行で,どの3本も同じ点で交わらない10本の直線の交点の個数は全部で 5 2023/02/14 16:31
- 高校 数学Aの問題で、円に内接するN角形(N>4)の対角線の総数は ア 本である。また、Fの頂点三つからで 1 2023/04/13 17:47
- DIY・エクステリア 円の中心の求め方 6 2022/07/17 19:18
- 数学 3次元実ベクトル空間において, 平面 P:x-y+z+1=0 と直線 L:2(x-1)=-y=-z 3 2022/10/29 14:39
- 数学 ベクトル方程式(ヘッセの標準形)についての質問 2 2022/04/23 18:00
- 数学 線形代数の平面についての問題がわからないです 2 2022/08/08 15:23
- 数学 平面の決定条件 ①『1直線上にない異なる3点』…点が空間に3つにあってもその3つの点を通らなければ平 5 2023/02/22 22:25
このQ&Aを見た人はこんなQ&Aも見ています
-
【お題】NEW演歌
【大喜利】 若い人に向けたことは分かるけど、それはちょっと寄せ過ぎて変になってないか?と思った演歌の歌詞
-
これ何て呼びますか
あなたのお住いの地域で、これ、何て呼びますか?
-
「これはヤバかったな」という遅刻エピソード
寝坊だったり、不測の事態だったり、いずれにしても遅刻の思い出はいつ思い出しても冷や汗をかいてしまいますよね。
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
ギリギリ行けるお一人様のライン
おひとり様需要が増えているというニュースも耳にしますが、 あなたが「ギリギリ一人でも行ける!」という場所や行為を教えてください
-
次の方程式、不等式を解け。ただし、aは定数とする。 ①ax=2(x+a) ②ax≦3 ③ax+1>x
高校
-
平面上において、4本だけが互いに並行で、どの3本も同じ点で交わらない10本の直線の交点の個数は全部で
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
メール文章で直線の描き方について
-
PowerPoint 罫線で直線を引く...
-
電気ハンドホールの設置間隔の...
-
ユークリッド幾何学とは?
-
不等号をはじめて習うのは?
-
120分の番組を1.5倍速で見ると8...
-
この証明は正解でしょうか?(中...
-
直線補完?
-
直線の傾き「m」の語源
-
数学の場合分けの番号振り
-
wordでルーズリーフに縦線を引...
-
数学A 共通接線の問題です
-
パワーポイント2010 コネクタ...
-
エクセル・パワーポイントなど...
-
なまし鉄線(番線)をまっすぐ...
-
excelで、曲線の長さを計測する...
-
円x²+y²=1と直線y=x+mが接する...
-
格子点の問題。可能な限り易...
-
円柱の測地線、微分幾何
-
中1数学について。 「1つの直線...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
メール文章で直線の描き方について
-
PowerPoint 罫線で直線を引く...
-
ユークリッド幾何学とは?
-
3点が「同一直線上」と「一直...
-
円x²+y²=1と直線y=x+mが接する...
-
グランドにきれいな長方形を描...
-
数Ⅱ、円と直線に関する三角形の...
-
電気ハンドホールの設置間隔の...
-
不等号をはじめて習うのは?
-
このSを正射影した面積がScosθ...
-
次の2直線のなす鋭角θをもとめ...
-
直線の傾き「m」の語源
-
円を直線で分割すると・・・?
-
エクセル・パワーポイントなど...
-
excelで、曲線の長さを計測する...
-
パワーポイント2010 コネクタ...
-
実数x,yはx^2+y^2=4を満たすと...
-
general formとstandard formの...
-
120分の番組を1.5倍速で見ると8...
-
座標平面上で、不等式│x-3│+│...
おすすめ情報