流体力学に出てくるブラジウスの解ってなんですか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

平板の周囲の境界層を解く際に、具体的で簡単な形としてブラジウス解が与えられます。


(1)定常で、平板をx座標に与えて二次元系で考えてください。
(2)x、yの独立変数を一つの独立変数zで与えます。
(3)速度場を流線関数で与えます。
色々試行錯誤ありますが、うまく変換するとf(z)の常微分方程式になるわけです。(境界条件をy=0で速度u,vがともに0、y=無限大でu=U”一様流”)
すると、

2f”+ff”=0  :f”はfの二階微分 (#) 

が解くべき常微分方程式です。(境界条件はz=0でfとf’が0、zが無限大でf’が1に変換されます)(#)式は一見すると簡単そうですが2項目が非線形項となっているので難しいです。さらに境界条件が離れた2点でとってあることも問題になります。大雑把に言えば、下のboundaryではべき級数解を与えて、上のboundaryでは漸近解を与えて両者を結合させます。べき級数解で一個の定数と漸近解を与える際に積分定数として最低2個でてくるので、最低3個の定数をうまくおいて接合解を与えます。

外場の流れをxのべき乗の形に変化させると境界層の剥離が起こるのですが、その時板の先端の角度に比例するbとべき数mには重要な関係があって、ブラジウスの解は平板(つまりb=0)なのでm=0の場合であるということが分かります。

あとは色々流体力学の本を読んでみるとよいでしょう。
    • good
    • 0

流体力学のナビエ・ストークス方程式に対して,


レイノルズ数Rが大きいとしてプラントルの境界層近似をおこない,
境界層方程式が得られます.
この境界層方程式で,速度U0の一様流に平行に置かれた薄い半無限平板が
あるときの境界層方程式の解がブラウジウスの解です.
この条件では,境界層方程式を簡単な形に変形でき,
境界近くおよび境界から離れた場所で解を求め,
両者をうまく接続してブラウジウスの解が得られます.

なお,境界層近似では,ナビエ・ストークス方程式に比べて微分方程式の階数が
1階下がっているため,境界条件に対する自由度が減ってしまいます.
そのあたりの扱いにも注意が必要です.

ここでは図は描けないし,式を書くのも(読むのも)大変です.
適当な流体力学の本を参照下さい.

ところで,burajiusu さん,
流体力学でブラウジウスの解,とわかっているのですから,
ここで質問するよりは図書館で流体力学の本を調べるべきです.
ここで私がいろいろ書くよりも
流体力学のプロが書いたわかりやすく間違いのない情報が得られるはずですよ.

なお,finetoothcomb さんがブラウジウスの公式
(第1公式(力)と第2公式(モーメント)があります)
について触れられていますが,上の話とは別の話です.
「ブラウジウスの解」と質問されていますので,
質問者の意図は多分私の話の方だと思います.
    • good
    • 0

誰も回答されていないようなので...



理化学辞典第三版によりますと、

ブラジウスの公式[Blasius' formula]
縮まない完全流体の2次元の定常渦なし流れにおいて,その中にある任意の柱状物体が流れからうける力(X,Y)と原点のまわりのモーメントMzを与える公式.

だそうです.回答になりますか?
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qブラジウスの式(管摩擦係数)

こんにちは。
流体力学についての質問です。

簡易的に管摩擦係数 f を求める場合に、
ブラジウスの式が使われる場合がありますが、
教科書によって
f=0.079*Re^(-0.25) と書いてあったり、
f=0.3164*Re^(-0.25) と書いてあったりするのですが、
これは、摩擦係数の考え方の違いなのでしょうか?

ちょうど4倍違うので、そうなのかなぁと勝手に思ったのですが。
なぜこのように違う表記があるのか、
そして、どういう考え方のもと両者が違うのかをどなたか教えてください。

Aベストアンサー

摩擦係数にはダルシーの摩擦係数Cdとファニングの摩擦係数Cfと
二種類あり、Cd=4Cfの関係があります。
その結果、摩擦係数としてファニングを用いるか、ダルシーを
用いるかによって、ブラジウスの式などの摩擦係数の整理式の
係数が4倍異なる、という結果になります。

論文などでは"ダルシーの"摩擦係数というように明確に記載が
ある場合もありますが、無い場合もありますので、摩擦損失と
管摩擦係数の関係式などを見ながら、どちらの摩擦計数が
用いられているか判定していく必要があります。
(それでもどうしても判断つかない場合もあります。)

詳細はそれぞれの教科書をよく読んでください。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qルンゲクッタ法の二階微分方程式(Fortran)

数値計算の演習問題で以下の二階微分方程式をルンゲ・クッタで解けという問題があります。

-y"+x^2・y=e・y(eは定数、”・”は単なる掛け算)

y(0)=1, y'(0)=0, 0<=x<=2までを計算せよ。



これは

y’=z・・・(1)
 
z'=(x^2-e)y・・・(2)

この2つの連立方程式を解けばよいところまではわかります。
まず(2)を解くときにルンゲ・クッタの場合
(k1+2k2+2k3+k4)/6の項(←公式の右辺第二項)のk(1~4)を求めなければいけません。

質問はkの求め方です。

本にはy'=f(x,y,z) , z'=g(x,y,z)とおけば
(2)の場合だと例えばk1は
k1=g(xn,yn,zn)dxで計算する。と書いてあります
しかしz'=(x^2-e)y(←zが入ってない) なので、計算すると
k1=g(xn,yn)dxとなってしまうんですがどうなんでしょう?

おそらくどこかで勘違いしてると思うんです。
長い質問になってしまいましたがどうかご教授のほどよろしくお願いします。

数値計算の演習問題で以下の二階微分方程式をルンゲ・クッタで解けという問題があります。

-y"+x^2・y=e・y(eは定数、”・”は単なる掛け算)

y(0)=1, y'(0)=0, 0<=x<=2までを計算せよ。



これは

y’=z・・・(1)
 
z'=(x^2-e)y・・・(2)

この2つの連立方程式を解けばよいところまではわかります。
まず(2)を解くときにルンゲ・クッタの場合
(k1+2k2+2k3+k4)/6の項(←公式の右辺第二項)のk(1~4)を求めなければいけません。

質問はkの求め方です。

本にはy'=f(x,y,z) , z'=g...続きを読む

Aベストアンサー

卒論で微分方程式の数値計算をやったので多少の覚えはあります。結局僕の場合はy'の項が入ってるのでリープフロッグの方が収束が早いという事でそっちにしましたが。

> k1=g(xn,yn)dxとなってしまうんですがどうなんでしょう?

問題ありません。

> 本にはy'=f(x,y,z) , z'=g(x,y,z)とおけば

というのはy', z'がx,y,zの関数という一般の場合であり、仮に
f(x, y, z) = x + y
という関数が存在しても何の問題もないのと同じです。

k1を計算する際にも
k1 = (x^2 - e)y * dx
と値が一意に決まり、問題ないでしょう。

ちなみにこの程度の微分方程式なら刻み幅dxにも寄りますが、プログラムなど組まなくてもExcelで一発で出ますよ。グラフも。

Qせん断力と曲げモーメントの符号について

せん断力と曲げモーメントの符号を以下のルールで考え以下の2つの問題を考えると私の計算では正解と合いません。問題1は正解ですが、同じやり方で問題2を解くとどうしても合いません。どなたか教えてください。

<ルール>
座標軸は右向きをx軸の正方向、下向きをy軸の正方向とする。
部材を仮想的に分割する分割面は外向きの法線ベクトルがx軸の正方向を向く面を分割面x+とする。逆をx-とする。面の符号と力の符号が一致すればせん断力の符号は+、そうでなければ-となる。
曲げモーメントは、はりの上面が凹となる場合を+、はりの上面が凸となる場合を-とする。

<問題1>
等分布加重wを受ける方持ちはりのB.M.DおよびS.F.Dを求めよ。

<回答>
原点をはりの自由端に置く。x点のつりあい式を作る。原点からx点までの全荷重はwx。荷重はx/2の距離に集中して作用すると考えると曲げモーメントMは
x点より自由端側の等分布荷重に対抗する曲げモーメントははりの上面を凸とするので-となり、
M=-wx^2/2
せん断力Fは等分布荷重と逆向きに働くので-方向となり、
F=-wx

<問題2>
等分布加重wを受ける両端支持はり(はりの長さはL)のB.M.DおよびS.F.Dを求めよ。

<回答>
支持点をA、B点として原点をA点とする。
支持点A、Bの反力RA、RBはRA=RB=wL/2(計算省略)。
曲げモーメントMは
A点の反力によるモーメントに対抗する曲げモーメントははりの上面を凹とするので+、等分布荷重によるモーメントに対抗する曲げモーメントははりの上面を凸とするので-となり合わせて、
M=RA・x-wx^2/2
せん断力Fは、A点の反力と逆向きに働くので-方向のものと、等分布荷重と逆向きに働くので+方向に働くものを合わせたもので、
F=-RA+wx

問題2の正解は
M=-RA・x+wx^2/2
F=RA-wx

せん断力と曲げモーメントの符号を以下のルールで考え以下の2つの問題を考えると私の計算では正解と合いません。問題1は正解ですが、同じやり方で問題2を解くとどうしても合いません。どなたか教えてください。

<ルール>
座標軸は右向きをx軸の正方向、下向きをy軸の正方向とする。
部材を仮想的に分割する分割面は外向きの法線ベクトルがx軸の正方向を向く面を分割面x+とする。逆をx-とする。面の符号と力の符号が一致すればせん断力の符号は+、そうでなければ-となる。
曲げモーメントは、はりの上面...続きを読む

Aベストアンサー

ピンぼけかもしれませんが
想い出しながら、下のように半信半疑で解いてみました。
本当の正解が早く見つかるといいですね、頑張ってください。

許容されるなら、ルールに次のことを補足して考えました。
****************************************************************
仮想点において、下向き荷重は+ 上向き荷重(反力)は-
        時計まわり(右まわり)の曲げモーメントは+ 反時計は- とする。
****************************************************************
問題1
荷重による曲げモーメントは反時計まわりに働くから-
M=-wx^2/2
荷重によるせん断力は下向きに働くから+
F=+wx

問題2
反力による曲げモーメントは時計まわりに働くから+
荷重による曲げモーメントは反時計まわりに働くから-
M=+RA・x-wx^2/2
反力によるせん断力は上向きに働くから-
荷重によるせん断力は下向きに働くから+
F=-RA+wx

ピンぼけかもしれませんが
想い出しながら、下のように半信半疑で解いてみました。
本当の正解が早く見つかるといいですね、頑張ってください。

許容されるなら、ルールに次のことを補足して考えました。
****************************************************************
仮想点において、下向き荷重は+ 上向き荷重(反力)は-
        時計まわり(右まわり)の曲げモーメントは+ 反時計は- とする。
****************************************************************
問題1
荷重による曲...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qヌセルト(ヌッセルト)数の経験式について

強制対流熱伝達(流体は空気)におけるヌセルト数を求める式を探しているのですが、なかなか見つかりません。
ヌセルト数は物体の形状や流れの状態によって式が違うようで、水平平板上の式は見つけたのですが、その他の形状(円管など)の式が見つかりません。
どなたか教えてください。
よろしくお願いします。

Aベストアンサー

>質問するのは初めてなもので返信遅れてしまいました
いえいえ、1週間以上(時には永久に)反応がないのことも多いので、当日は即返です。

【円管内流れのReとNuの定義】 [1]
円管内部の平均流速を Um [m/s] としたとき、Re数は次式で定義されます。
   Re ≡ ρ*Um*D/μ
ρ は流体の密度 [kg/m^3]、μ は粘性係数 [kg/s/m = N・s/m^2]、D は円管の内径 [m] です。
一方、円管のNuは
   Nu ≡ h*D/k
で定義されます。h は熱伝達係数 [W/m^2/K] 、k は流体の熱伝導率 [W/m/K] です。層流の場合、発達流れのNuは一定ですが、乱流では Reや Pr に依存します。

【円管内乱流のNu式】 [1]
発達流れに対する、滑らかな円管内乱流のNuにはいろいろな経験式があります。

   (1) Nu = 0.023*Re^(4/5)*Pr^n --- Colburnの式 [2]
   (2) Nu = 0.027*Re^(4/5)*Pr^(1/3)*( μ/μs )^0.14  --- Sieder and Tateの式 [2]
   (3) Nu = ( f/8 )*Re*Pr/[ 1.07 + 12.7*√( f/8 )* { Pr^(2.3) - 1 } ]  --- Petukhovの式
   (4) Nu = ( f/8 )*( Re - 1000 )*Pr/[ 1.07 + 12.7*√( f/8 )* { Pr^(2.3) - 1 } ]  --- Gnielinskiの式 [2]

(1)は流体の温度変化が比較的小さく、 0.7 ≦ Pr ≦ 160、10000 ≦ Re、10 ≦ L/D で成り立つ式です( L は管の長さ [m] )。n の値は、流体を加熱するときは n = 0.4、冷却するときは n = 0.3 です。この式は壁面温度一定の場合も、熱流束一定の場合にも使えます。空気の Pr は 0.7 程度なのでこの式が使えます。

(2)は流体の温度変化が大きく、流体の粘性が大きく変わる場合の式です。μ は流体の平均温度(入口温度と出口温度の和の半分)での粘性係数で、μs は壁面温度での流体の粘性係数になります。この式は壁面温度一定の場合も、熱流束一定の場合にも使えます。

式(1)、(2)は簡便ですが誤差が25%と大きいので、式(3)、(4)が提案されています(これらは誤差10%)。式(3)は0.5 ≦ Pr ≦2000、10000 ≦ Re ≦ 5×10^6、10 ≦ L/D で成り立つ式です。物性値は流体の平均温度(入口温度と出口温度の和の半分)での値を使います。

式(4)は式(3)より小さな Re での近似式で、0.5 ≦ Pr ≦2000、3000 ≦ Re ≦ 5×10^6、10 ≦ L/D で成り立ちます。物性値は流体の平均温度(入口温度と出口温度の和の半分)での値を使います。

式(3)、(4)に出てくる f は乱流での管摩擦係数で次式で表されます。
   f = 1/{ 0.790*ln( Re ) - 1.64 }^2
これは 3000 ≦ Re ≦ 5×10^6 での近似式です。
f と平均流速 Um、圧力勾配 dP/dx との関係は
   f*ρ*Um/( 2*D ) = -dP/dx
になります。

【断面が円形以外の場合】 [1]
管断面が円形以外の場合、上式の D (内直径)の代わりに、等価直径 Dh を使います。
   Dh ≡ 4*A/P
A は内部の断面積で、円形なら A = π*( D/2 )^2 = π*D^2/4、Pは内面の周囲長で、円形なら P = 2*π*( D/2 ) = π*D なので、円形なら Dh = D となります(こうなるように Dh の定義式は 4 がかかっている)。

[1] F.P.Incropera and D.P.DeWitt "Fundamentals of Heat and Mass Transfer" 5th edition, John Wily & Sons (2002), Chapter 8 (Internal Flow).
[2] 右URL(Excelファイル)の 77行目以降に式が出ている http://www-physics.lbl.gov/~gilg/DavidStuff/Pixel%20Mech/Pixel%20Cooling/vvc6f14lqd.xls

>質問するのは初めてなもので返信遅れてしまいました
いえいえ、1週間以上(時には永久に)反応がないのことも多いので、当日は即返です。

【円管内流れのReとNuの定義】 [1]
円管内部の平均流速を Um [m/s] としたとき、Re数は次式で定義されます。
   Re ≡ ρ*Um*D/μ
ρ は流体の密度 [kg/m^3]、μ は粘性係数 [kg/s/m = N・s/m^2]、D は円管の内径 [m] です。
一方、円管のNuは
   Nu ≡ h*D/k
で定義されます。h は熱伝達係数 [W/m^2/K] 、k は流体の熱伝導率 [W/m/K] です。層流の場合、発達流...続きを読む

Qナビエストークスとストークス近似

ストークス近似はナビエストークスの慣性力の項をなくしていると思いますが、物理的な意味が理解できません。慣性力がないつまり動いていない状態で、流体の力を受けるというのもいまいち理解できません。
簡単に教えてください

Aベストアンサー

ナビエ・ストークス方程式は、非圧縮性粘性流体の運動方程式です。
この方程式は非線形方程式で、方程式の解を求めるのが困難です。

そこで、
非常に流速が遅い、微小な部分についてのみ考えるなど、粘性力に対して慣性力が無視できるほど小さい場合には、非線形項である慣性項を無視して方程式を解きやすくします。これがストークス近似です。

慣性力がないのではなく、運動を考える上で慣性力の影響を無視できるほど十分小さい場合の、あくまで「近似」なのです。

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Qレイノルズ数の具体的な値について

円管内流れにおける臨界レイノルズ数について教えてください。
調べても2000~4000などとあいまいにしか出てきません。。
できるだけ具体的な値を知りたいです!!

あと、なぜ臨界レイノルズ数の値ってこんなにばらつきが生じるのでしょうか?その理由についても教えて頂けると嬉しいです。

Aベストアンサー

臨界レイノルズ数に幅があるのは、この数値が計算ではなく
実験によるものだからということなのでしょう。

レイノルズ自身は円管の臨界レイノルズ数は「2300」と
実験で求めたそうですが、後の研究者の実験ではバラつき、
必ずしも2300ではない、との見解がこの幅のある表現に
なってるらしいです。

円管で無く飛行機の翼の実験では、レイノルズ数を増大させた
時と減少させた時とでは観測される臨界レイノルズ数が違い、
「数域」と呼べる幅が出来るそうで、この幅は「履歴現象
(ヒステリシス)」と呼ばれるそうです。
また翼型によっては、臨界レイノルズ数域自体が観測されない
(レイノルズ数の違いがポーラーカーブに差となって現れない)
ものもあるそうです。

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング