計算が嫌いで苦手な理系のものです.

質題のとおり,2つのガウス分布の積の計算をしたいのですが,自分でおこなっても答えに至っていません.
そのためどうしても計算法を知りたいと思い, この場をお借りして質問させていただきました.

問題はガウス分布p_1(x)=N(x|m_1,a^-1), p_2(x)=N(x|m_2,b^-2)の積を求めよというシンプルなもの.
ちなみにmは平均, a,bは精度となってます.
答えは
p(x)=N(x|m,g^-1)
m=(a*m_1+b*m_2)/(a+b)
g=a+b
となるようです.

簡単だと思うのですが,なんか至ってない.
詳細の説明込みでご回答いただけると助かります.
よろしくお願い致します.

A 回答 (3件)

「積」がp(x) = p_1(x)p_2(x)のことであるなら、質問にあるようなコタエにはならない。


問題が求めているのはおそらく畳み込み (convolution)

p(x) = ∫ p_1(t)p_2(x-t) dt (積分はt=-∞~∞の定積分)

でしょうよ。だとしても、

> p_1(x)=N(x|m_1,a^-1), p_2(x)=N(x|m_2,b^-2)

というんじゃあ、aとbは相互に単位が一致していないので、質問にあるようなコタエにはならない。

 そこも修正したとして、あとは単に定積分の計算をやるだけだが、さて、一体どこが分からんと仰るのかなあ。
出来たところまで書いてみては?
    • good
    • 0

密度関数の積 p1(x1)・p2(x2) を、


領域 x1・x2 = x 上で積分するだけです。
ただ黙々と計算しましょう。
    • good
    • 0

m_1,m_2は何ですか。

mとどういう関係にあるのですか。

この回答への補足

ご回答ありがとうございます.
これはこちらの記述ミスでして,m_1,m_2はp_1,p_2の平均です.
mはpの平均です.
申し訳ございませんでした.

補足日時:2011/11/11 23:17
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qばらつきの掛け算

統計学に関する質問をさせていただきます。
N(μ1,σ1^2)の分布を持っているものと、N(μ2,σ2^2)の分布を持っているものを掛け算したとき、その結果はどのような分布になるのでしょうか?
具体的に申し上げます(カテゴリからちょっと外れてしまいますが)。とある電子回路の出力値が2つの部品の特性値の積で決定されるのですが、2つの部品のそれぞれの製造ばらつきが判明しているときに、出力値の分布が数式的にどのように表わすことがきるのかわからず悩んでいます。
同等の質問が既出でしたらごめんなさい。宜しくお願いいたします。

Aベストアンサー

確率的に変動する互いに独立な2つの変数x1, x2の積。一般には、かなりややこしい話になります。特にx1が(あるいはx2が)変動のために正になったり負になったりする、ということまで考慮すると。

 でも、製造ばらつきの話ですから、そんなに極端なばらつきは(多分)ないでしょう。もし、平均値μに比べて変動の幅σがうんと小さいのならば、ごく簡単な式で近似できます。

 p1, p2を、平均0、分散1の正規分布(標準正規分布)に従う、互いに独立な確率変数であるとして、
x1 = μ1 + σ1 p1
x2 = μ2 + σ2 p2
となっているものと考えます。以下は | σ1 / μ1 |<< 1であると仮定できる場合の話です。知りたいのは、x1x2がどうなるかですね。

 対数を取って
ln(x1) = ln ( (1+(σ1 / μ1)p1) + ln(μ1)
 ここで、ln(1+x)は|x|が小さい時
ln(1+x) ≒ x
であるから、仮定により、
ln ( (1+(σ1 / μ1)p1) ≒ (σ1 / μ1)p1
従って、
ln(x1) ≒ ln(μ1)+(σ1 / μ1)p1
です。なので
ln(x1x2)=ln(x1)+ln(x2) ≒ ln(μ1μ2)+q
ただしqは確率変数
q = (σ1 / μ1)p1+(σ2 / μ2)p2
です。
従って、対数を外すと
x1x2 ≒μ1μ2 exp(q)
ということになる。ところで |q|が小さいと仮定したのだから、
exp(q)≒1+q
であり、ゆえに
x1x2 ≒ μ1μ2 (1+q)

 さて、p1, p2は互いに独立で、どちらも標準正規分布に従うのだから、 qは平均0、分散 (σ1 / μ1)^2 + (σ2 / μ2)^2 の正規分布に従うことになります。

確率的に変動する互いに独立な2つの変数x1, x2の積。一般には、かなりややこしい話になります。特にx1が(あるいはx2が)変動のために正になったり負になったりする、ということまで考慮すると。

 でも、製造ばらつきの話ですから、そんなに極端なばらつきは(多分)ないでしょう。もし、平均値μに比べて変動の幅σがうんと小さいのならば、ごく簡単な式で近似できます。

 p1, p2を、平均0、分散1の正規分布(標準正規分布)に従う、互いに独立な確率変数であるとして、
x1 = μ1 + σ1 p1
x2 = μ2 + σ2 ...続きを読む

Q2つの正規分布を合成したらどうなるのでしょうか?

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

もしμ3=μ1+μ2,σ3=σ1+σ2のように平均も分散も和で考えてよいのなら

f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}

が答えだと思っているのですが、それとは別のやり方で



f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。

しかし、僕の数学の知識ではこれができなくて困っています。ガウス積分の公式を使ったりしなければいけないのではないかとも考えいるのですが行き詰っています。

アドバイスよろしくお願いいたします。

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

...続きを読む

Aベストアンサー

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z の平均と「分散」をμ3, (σ3)^2 とすると・・・

μ3 = μ1 + μ2
は、X, Y がどのような分布であっても(X, Y が異なる分布であっても)成立しますし、X, Y が互いに独立であるか否かに関わらず成立します。
また、X, Y が互いに独立であれば(それらの分布によらず)、
(σ3)^2 = (σ1)^2 + (σ2)^2
が成立します。(このとき Z = X + Y の「標準偏差」σ3 は、σ3 = √( (σ1)^2 + (σ2)^2 ) )

> f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}
> が答えだと思っているのですが
X, Y が互いに独立な確率変数であり、共に正規分布に従うならば、X + Y もまた正規分布に従うという事実は確かにありますが、これは正規分布の「再生性」と呼ばれる特別な性質であることを理解していなければなりません。その点、大丈夫ですか?

> それとは別のやり方で
> f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
> f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。
上述したように、正規分布の再生性を示す必要があるならば、畳み込み積分でそれを示すのが一法なのであって、何も「別のやり方」ではありません。
案ずるより計算するが易しです。式の整理が面倒なだけで、特別な知識は不要です。
f(x) = 1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}
g(x) = 1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}
h(x) = ∫f(t) g(x - t) dt
  = 1/(2πσ1 σ2) ∫exp{ - (t - μ1)^2 / (2σ1^2) - (x - t - μ2)^2 / (2σ2^2) } dt
  epx( ) の指数部を t で平方完成して
  = 1/(2πσ1 σ2) ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2)) - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } dt
  = 1/(2πσ1 σ2) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2))} dt
  = 1/√(2π(σ1^2 + σ2^2)) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) }
  (∵ ∫ exp ( - (t - A)^2 / 2B^2 ) dt = √(2π) B )
μ3 = μ1 + μ2, σ3^2 = σ1^2 + σ2^2 とおけば
h(x) = 1/(√(2π) σ3) exp( - (x - μ3)^2 / 2 σ3^2 )
途中、「何ちゃら」の部分は省略してますので、興味があれば追っかけてみてください。

なお、本件は確率論において、ごくごく基本的な事項です。
もし、これから確率統計を使って研究をされるのならば、このような件を簡単に質問して済ませるのは危うい感じがします。ちゃんと書籍を読まれ、その上で質問されるのが宜しいでしょう。

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z ...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q二つのガウス分布の畳み込み積分 得られるガウス分布の標準偏差σは?

二つのガウス分布の畳み込み積分についてお尋ねします。
標準偏差σ1、σ2をもつガウス分布F1、F2をF1*F2と畳み込むと、あるガウス分布Fが得られると思います。そのガウス分布Fの標準偏差σは
σ=sqrt(σ1^2+σ2^2)
で与えられるでしょうか。

Aベストアンサー

はい、その通り。

Q「ノルム、絶対値、長さ」の違いについて

あじぽんと申します。よろしくお願いします。

ベクトルや複素数などに出てくる「ノルムと絶対値と長さ」というのは同じことを違う言葉で表現しているのでしょうか?
手元にある書籍などには全てが同じ式で求められています。
同じ式で表現されていても意味は少しづつ違っていたりするのでしょうか?

よろしくお願いします。

Aベストアンサー

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して定義できます。
数に対しては「長さ」という言い方はあまり聞かないと思います。
例えば、「3」の長さというような言い方は耳になじまないと思います。
一方、ベクトルの場合は、「矢印」という「線」になりますので「長さ」が定義できます。



最後の「ノルム」は、線形空間に対して定義できます。(もちろん実数、複素数やベクトルも線形空間です)
ノルムの条件を満たせばノルムになるため、複数のノルムが考えられます。
そのため、「(1,1)というベクトルに対するノルムは?」
という質問に対しては、「どのノルムを使うか?」という条件が欠けているため厳密に言うと「解答はできません」。
例としてよく扱われるノルムは「ユークリッドノルム」と言われ、通常のベクトルの長さと等しくなります。

ベクトルに対するノルムでは、「最大値ノルム」というのが他の例としてよく使われます。
これは、ベクトルの各要素の最大値で定義されます。
(例:(3,1,5)というベクトルの最大値ノルムは、3つの数字の最大値である5になります)

ノルムというと、線形空間であれば定義できるため、
f(x) = 3x^2+5x
という数式に対するノルムというのも考えられます。
(数式は、定数倍したり、足し算したりできますよね)
数式に対して「絶対値」とか「長さ」と言ってもピンと来ないですよね。

しかし、まだやられていないかもしれませんが、数式に対するノルムというのは存在します。


そうすると、なんでこんなんがあるねん。って話になると思います。

ここで、ベクトルに対してある定理があったとします。

それがさっきのような数式など他の線形空間でも成り立つんだろうか?
というのを考えるときに「ノルム」の登場です。

その定理の証明で、「ベクトル」として性質を使わずに「ノルム」の性質だけを使って証明ができれば、
それは「ベクトル」に対する証明でなくて「ノルムを持つもの」に対する証明になります。
(ちょっと難しいかな?)


このようにして、定理の応用範囲を広げるために「長さ」や「絶対値」の考え方をベクトルだけでなく「線形空間」という広い考え方に適用できるようにしたのが「ノルム」になります。

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して...続きを読む

Q正規分布の加法性について

すいません。統計学初学者です。
正規分布の加法性でわからないことがございます。

1.N(u1, σ1^2) + N(u2, σ2^2) → N(u1 + u2, σ1^2+σ2^2)
2.N(u1, σ1^2) - N(u2, σ2^2) → N(u1 - u2, σ1^2+σ2^2)

正規分布を足しても引いても、
平均はそれぞれ、足されるあるいは引かれますが、
なぜ、分散だけはどちらも足されるのでしょうか?
分散は引くことは出来ないものなのでしょうか?

よろしくお願いいたします。

Aベストアンサー

>分散を引いたときと足したとき、分散の値は同じ。

根本的な誤解があります。質問者さんが参考にしている本も私たちも分散の引き算を、
さらには分布の引き算を論じているわけではありません。2つの確率変数X,Yの和、差の
結果として(X-Y)の分布、分散がどうなるかを論じています。この二つは全く違う議論です。

確率変数は何らかの分布に従ってはいても実態は具体的な数字です。
サイコロの出目であったり、#3で例としてあげたコインの枚数であったり、
工場で作れらる製品の不良品の数であったり様々ですがあくまでただの数字であり、
分布では有りません。ただ、その出現頻度が何らかの法則に従っているだけです。
この具体的な数字、例えば大きなサイコロと小さなサイコロを振って大きいサイコロの
出目から小さいサイコロの出目を引くといったことを考えるのが確率変数の引き算で、
その結果がどのような分布に従うことになるかを今、論じているのです。

さらに分かり易い(?)例を考えてみると、A社の200g入り牛乳の実重量が正規分布(203,1)に
従っているとします。ここから2本ずつ取り出してそれぞれの重量の差を求めてみます。
その結果が(0,0)、つまり全部0、どれも差がなかったことになると思いますか?
重いものから軽いものを引くこともあるし、軽いものから重いものを引くこともあり
結果として差は正規分布(0,2)に従うことになりますよ、と言っているのが参考書ですし、
回答者みなさんなのです。

もちろん、分散を引く計算を問題にすることも出来ます。
重量が正規分布に従うコップが有ってここに重量が正規分布(100,5)に従う水を
入れたら全体の重さは正規分布(120,8)に従った。元のコップの分布を求めよ。
これなら分散を引いて答えは(20,3)になります。しかしこれは確率変数の差を
求めているわけではないのですよ。

>分散を引いたときと足したとき、分散の値は同じ。

根本的な誤解があります。質問者さんが参考にしている本も私たちも分散の引き算を、
さらには分布の引き算を論じているわけではありません。2つの確率変数X,Yの和、差の
結果として(X-Y)の分布、分散がどうなるかを論じています。この二つは全く違う議論です。

確率変数は何らかの分布に従ってはいても実態は具体的な数字です。
サイコロの出目であったり、#3で例としてあげたコインの枚数であったり、
工場で作れらる製品の不良品の数であったり様々...続きを読む

Q凸集合

次の問題を教えて下さい。基本的ですいません。
よろしくお願いします。

----------------------------------
以下の集合が凸集合であることを示せ
A={ x^2+y^2≦r^2 }∈R^2 (rは定数)
B={ x^2+y^2≦z } ∈R^3
----------------------------------

Aベストアンサー

(1)
0≦r∈R
A={(x,y)∈R^2|x^2+y^2≦r^2}
{(a,b),(c,d)}⊂A
0≦t≦1
(x,y)=(1-t)(a,b)+t(c,d)
とすると
a^2+b^2≦r^2
c^2+d^2≦r^2
(a^2+b^2)(c^2+d^2)-(ac+bd)^2=(ad-bc)^2≧0

x^2+y^2
={(1-t)a+tc}^2+{(1-t)b+td}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ac+bd)+t^2(c^2+d^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(c^2+d^2)}+t^2(c^2+d^2)
={(1-t)√(a^2+b^2)+t√(c^2+d^2)}^2
≦r^2

(2)
B={(x,y,z)∈R^3|x^2+y^2≦z}
(a,b,c)∈R^3
(d,e,f)∈R^3
0≦t≦1
(x,y,z)=(1-t)(a,b,c)+t(d,e,f)
とすると
a^2+b^2≦c
d^2+e^2≦f
(a^2+b^2)(d^2+e^2)-(ad+be)^2=(ae-bd)^2≧0

x^2+y^2
={(1-t)a+td}^2+{(1-t)b+te}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ad+be)+t^2(d^2+e^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(d^2+e^2)}+t^2(d^2+e^2)
≦c(1-t)^2+2(1-t)t√(cf)+ft^2
=(1-t)c+tf-t(1-t)(√c-√f)^2
≦(1-t)c+tf
=z

(1)
0≦r∈R
A={(x,y)∈R^2|x^2+y^2≦r^2}
{(a,b),(c,d)}⊂A
0≦t≦1
(x,y)=(1-t)(a,b)+t(c,d)
とすると
a^2+b^2≦r^2
c^2+d^2≦r^2
(a^2+b^2)(c^2+d^2)-(ac+bd)^2=(ad-bc)^2≧0

x^2+y^2
={(1-t)a+tc}^2+{(1-t)b+td}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ac+bd)+t^2(c^2+d^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(c^2+d^2)}+t^2(c^2+d^2)
={(1-t)√(a^2+b^2)+t√(c^2+d^2)}^2
≦r^2

(2)
B={(x,y,z)∈R^3|x^2+y^2≦z}
(a,b,c)∈R^3
(d,e,f)∈R^3
0≦t≦1
(x,y,z)=(1-t)(a,b,c)+t(d,e,f)
とすると
a^2+b^2≦c
d^2+e^2≦f
(a^2+b^2)(d^2+e^2)...続きを読む

Q英語で「個数」「件数」は?

質問は単純です。
英語で「個数」や「件数」をなんというか、です。

とりあえず、思いついたのは、numberでした。
たとえば、「りんごの個数」は"a number of apples"ですか?
でも、"a number of"は「いくつかの」という意味ですよね。

「データの件数」は"a number of data"でしょうか?

私は英語はほとんど出来ませんが、numberは「個数」というよりも「番号」という意味であるような気がしてなりません。

Aベストアンサー

>「個数」や「件数」をなんというか、です。
>とりあえず、思いついたのは、numberでした。
意外に思われるかもしれまんせんが、語の選択はnumberであっています、と思います。

>「りんごの個数」
the number of (the) apples

>「データの件数」
the number of (the) data

>numberは「個数」というよりも「番号」という意味であるような気がしてなりません。
実は、昔、私も、「個数や件数はなんていうのかな、え、number? え、本当?」と、奇異に感じたことを、思い出しました。

Qベクトルの一次独立に付いて

例えば、n次の a と b のベクトルがあったとき、これらの一次独立を判別する、簡単な(できればコンピュータで演算する場合に早い)方法を教えていただけないでしょうか?

現在、a と b を共に 単位ベクトルに変換して、ua + ub あるいは ua - ub の何れかが 0 になるかどうかで判別していますが、どうもすっきりしません。

--
それと、a もしくは b が zero ベクトルの場合は、一次独立(あるいは従属)は定義できるのでしょうか?

Aベストアンサー

単位ベクトルを作る時に平方根を使うと、処理が重くなりますね。

また、プログラムが簡単と、演算が速い、は必ずしも両立しません。

普通に考えると、#1さんのようなアルゴリズムになると思います。

判定のループを、成り立たなくなった時点で抜けると効率も良いでしょう。

for(i=0;i<n;i++)
if(a[0]*b[i] != b[0]*a[i])
return 1;

return 0;

<返り値>1:一次独立 0:一次従属


また、bが0ベクトルだと、b=0aと書けますから、
一次独立にはならないですね。

一次従属は、言ってもいいのではないでしょうか。

参考URL:http://ja.wikipedia.org/wiki/%E7%B7%9A%E5%9E%8B%E7%B5%90%E5%90%88

Qガウスノイズについて

ガウスノイズについて教えてください!
実験などでデータにノイズを付加する際に、
ガウスノイズを加えることが多いようですが。

ガウスノイズとはそもそも何なのでしょうか?
予想ではノイズの発生頻度が正規分布であることではないかと思うのですが・・・
付加するノイズの値はどのように決めているのでしょうか?

ご存知の方教えてください。<(_ _)>

Aベストアンサー

ガウスノイズは、おっしゃるとおり、ノイズが入っていないときの値を平均として、適当な分散の正規分布にしたがうノイズのことです。

ノイズの値は、実験の際に信号をノイズ除去プログラムで除去できそうな大きさのノイズであったり、実際の環境で想定される大きさのものに設定すると思います。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング