
こんにちは、
みなさんは、この話を知っていますか?
そしてどのように思いますか?
わたしは、なんだか腹が立ってしまいました。
最近の学校で、円周率を 「3」と教えているところがあるそうです。
子供に「3.14だよ」とか
「3.14159・・・って何万桁も続いていて、今もそれをコンピュータで計算したりしてるんだよ」というと
「3でいいの!学校で習ったんだから」といわれるそうです。
これって、ちょっと納得できないです。
けど、どこに、だれに文句を言っていいのかわかりません。
どう思いますか。そして、このままでいいんでしょうか?
特に教育関係者のかた!
A 回答 (27件中11~20件)
- 最新から表示
- 回答順に表示
No.17
- 回答日時:
個人的な意見の返答ですが。
円周率を3としても、3.14としても数学的には何も問題ないと思います。
求める答えの正確性をどこまで追求するかによるからです。
どちらの答えでも、結局、厳密な答えではないですから。
しかし、円周率を3として計算させるのは問題ないですが、
円周率を3として教えるのにはすごく問題があると思います。
円周率は3じゃないけど便宜上3として問題を解くのは、必要とする
精度の問題ですが、実際3ではない円周率を3だよと教えるのには
少し困惑します。
しかし、段階を追って教えるために便宜上つく嘘ならば
仕方が無いのかもしれません。
例えば、小学校で割り算を習いますが、1÷0は許されませんが
0÷1は許されますね、しかし、これは、わざと触れないように
教えます、もし聞かれても、あまり突っ込まないように誤魔化して
教えます。そこの授業で教えようとしているねらいがありますし、
まだ、教える段階を踏んでないからです。
私は小学校の教育について全然知りませんが、もしかしたら、
きちんとした理由があるのかもしれません。
(個人的には不信感でいっぱいですが・・・・)
No.16
- 回答日時:
ふたたびbear_sanなのです
ざっと計算してみましたが,
円の面積の式πr^2において,
π=3とすると12角形の面積を求めていることになり,
π=3.14とするとだいたい114角形の面積を求めていることになりそうです.
ざっとやったので自信ありません^^;
ご参考まで.
No.15
- 回答日時:
私の個人的な意見です。
私の小学校時代の経験ですが、3.14の計算は確かに大変でした。しかしながらあの3桁の面倒な計算は、わざわざ全てを計算しなくてもいい場合も結構ありますよね。左辺と右辺の両方に3.14が含まれる場合は消す事ができますから。
何がいいたいかと言うと、つまり面倒な3.14の計算をなくそうなくそうと努力することもあるわけです。これは広い視野を持つという事ですし、無駄を省くという考え方は現代社会を支えている考え方のひとつですよね。
3.14に限らず安易な簡略化は、学力以外にも思考力などに関することにも影響するのでは、と思うのですが。
No.13
- 回答日時:
全く同感です!!。
日本の教育も落ちる所まで落ちたという感じですね。
昔から3、14でやって来てなぜ今になって3になるのか?。
計算を簡単にするための処置?。納得いきませんね。そんな単純な理由で何百年も続いた物をかえるとは。
式が合ってても計算した答えが間違っていたら、何の
役にも立たないではないですか。何?だからその間違いをすくなくするためだって。
3、14で間違える人は3にしても一緒の事、50歩100歩の世界です。
計算力をつけるためにも3,14のままでいてほしいですね。
円周率は3,14、常識です!!。
No.12
- 回答日時:
私はtabasakiさんの意見に賛成です。
確かに3でも3.14でも大して変わりませんが、
3.14というこの中途半端さが良いと思う。
もし、3と習ったら3なんだ・・・で終わってしまうけど、
3.14だと何でこんな中途半端な数なんだ?!と疑問を持ちます。
勉強に必要な事は、沢山のことに疑問を持つ事です。
沢山の不思議なことに何故だろう?!と考える事、
答えが出なくても、考える事こそ必要なのではないでしょうか?
生きていく中でもそうではありませんか?!
3.14というのも、その不思議の1つだと思います。
円周率はいくつかと言う事ではなく、
永遠に続くということが、大切なのだと思います。
繰り返しますが、
それを意識するために、3というきっちりした数ではなく、
3.14という中途半端な数にしておく必要があるのだと思います。
この回答への補足
(なんかわたしだけ、ここに書いてるのって、チョイ気まずいですけど・・)
>3.14というこの中途半端さが良い
うん、うん、そーです、その感じなんですよ、それでそいつは
>永遠に続
いちゃうんですよ。
しかも、周長が同じ形のなかで、いちばん広いんだよ~だ。
そんな「不思議」の入り口かも・・・3.14・・・
No.11
- 回答日時:
小学生の間は、3。
「中学以降で、実は3ではなくて。。。」という説明と共に、πを学習するはずですが。ですから、円周率がπ(3.14..)を知らない人が増えるわけではなく、習うのを後にしただけです。ということで、私は、小学生の間は3で十分だと思います。ただし、「実はπ・・・」を教える時に、かなりちゃんと教えないとマズイとは思いますが。
どうも、マスコミの表現が適当ではなく、エキセントリックな考えがはびこっているように思うのは。私だけでしょうか。。。
この回答への補足
締め切ろうとおもった矢先に・・・
あ、kuniuni さんは悪くないですよ。
(なんか掲示板みたくなってきたけど、まいっか)
>「中学以降で、実は3ではなくて。。。」
それは、あれですか、、、その、、じつは赤ちゃんは、コウノトリじゃなくて。。。。って感じ?
そいつぁいいや。興味津々でね。
一気にばらしてしまわないって方法ですね。
「大人になったらわかるの」
No.10
- 回答日時:
そう、六角形の周囲の長さと同じになりますね。
ほかに、例えば球の体積 4/3 * πr^3は約分できて4r^3。一片がrの立方体4つと
同じ。
幾何を学ぶ時間を計算問題の訓練の時間にしたくないのだったら、
「π」というものも同時に教えるとどうでしょう。それで、
「直径3cmの円周は、3×πになります。概算するとまあ大体9cmなん
だけどね」
最後に具体的な数字が欲しいときだけ計算すればよろしい。
…と思うのは私がプログラマだからでしょうか。
実生活で使わないからいいという問題ではありません。数学はとくに
そうだと思うのですが、学問には「考え方を学ぶ」という重要な役割が
あります。でなければ、「さあこの丸いケーキを6等分してごらんなさい」
に対して「だってうち家族4人だもん」「ショートケーキ買うからいい」
といい、家族4人用のレシピでないと料理も作れないことになります。
「円には、謎の数字が含まれている。謎の数字があっても、とりあえず
それをそのままにして計算を続けることが可能だ」
「およその数を含んで計算を始めたら、それに関わって出てくる数字は
すべておよその数だから注意しなければならない。およその数×およその数
なんてやると、とても誤差が多くなったりする」
なんてことを学ぶこともあるでしょう。「世の中、割りきれること
ばかりではない。そればかりか、割りきれない変な数字でも円みたいな
美しいものを作ることがある」なんて理解しちゃったり。
我が業界でも、多人数が使うコンピュータ(OS)の仕組みを
「だって、普段パソコンだしボクしか使わないじゃないですか」と
うそぶいて理解しようともせず、あとでマシンに侵入されたり大事な
ファイル消してしまったりしてから慌てる若者が増えているようです。
実際、困ったもんですよ。他人事じゃありません。能力がない人間や
きちんと学んでない人間が増えると、ある程度の数ならそれを相手に
商売すればいい、なんてノンキに構えててもいいですが、多くなり
すぎると、こっちの迷惑になってくるんですから。仕事を頼める人が
いなくなる。
>ファイル消してしまったりしてから慌てる若者
あわてない○か者もいますし・・
>割りきれない変な数字でも円みたいな美しいものを作ることがある
てのは、グッときちゃいました。
----
あの、みなさんご回答ありがとうございました。
自分は、こういう事実をつい今日まで知らずにいたので、
取り乱してしまいました。
お礼をだせていない人にも、感謝です。
なんだか、解決しようのない質問でごめんね。
とてもためになりました。
ありがとうございました。
No.8
- 回答日時:
j_euroさんが、腹を立ててらっしゃるのはそういう生意気なことを言うガ....、
いえ、お子様に対してでしょうか?(^^);
まあ、冗談はさておき、おっしゃるとおり、円手率は無限に続くわけですから、
どこで「丸めるか」だけの問題ですよね?
3.14は3よりも有効数字が増えるだけでまあ、言ってみれば「少しまし」な程度で
それ以上のことはないと思います。3が「駄目」なら`3.14`も駄目では?
もっとも小学生でも`3`桁の計算くらい`やってもいいとは思いますけどね。
この回答への補足
あ、いや、お子様をご指導くださっているセ○コ...
じゃなくて、そういう方向(指導要領?)に対してかな?
で、「3.14なんだ!」っていうのも、ん~ちょっとね~
要するに、ホントのことを精一杯おしえてあげようよと
思うんですが・・
「こいつらには、3でいいんだ」とか、「ほんとの3.14・・・を言っちゃうとお座りしていただけないから」なんて感じですよ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
エクセルで、重力加速度
-
円錐の展開図面を描きたい
-
円弧とはどんな形ですか? 画像...
-
円周率は何割る何で求まりますか?
-
扇形の作図の計算方法を教えて...
-
円の半径が2倍になると面積と...
-
コップの体積(容積?)が知り...
-
円周率をルートすると(平方根)、
-
この図形の名前は...扇形?...
-
円錐の影の面積
-
円周率は中学校でπ、小学校で3....
-
円錐の展開図
-
フランジに24この穴明コンパス...
-
円に外接する多角形の周は、ど...
-
円周率とπ(ラジアン)
-
2πrとπd
-
数学のレポートについて・・・...
-
大学数学の積分の問題です
-
円錐を斜めに切断しても卵型に...
-
弦長から弧長の求め方
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
エクセルで、重力加速度
-
円錐の展開図面を描きたい
-
円周率は何割る何で求まりますか?
-
円弧とはどんな形ですか? 画像...
-
中心角を求める計算方法を教え...
-
円周率をルートすると(平方根)、
-
この図形の名前は...扇形?...
-
一周が360度で2π=360度...
-
弦長から弧長の求め方
-
円周にそったサイン曲線は描け...
-
弧ABとは?
-
フランジに24この穴明コンパス...
-
バケツの展開図
-
扇形の作図の計算方法を教えて...
-
円柱の内容積の求め方
-
ギヤ比とモーター回転数の計算
-
中2●数学で分からない問題があ...
-
円錐の側面積について。 面積を...
-
円の中心の求め方
-
円錐を表す陰関数を教えて下さい。
おすすめ情報