プロが教えるわが家の防犯対策術!

レーザー光線が広がらないのはコヒーレントだからという説明を目にしますが、コヒーレントだとどうして広がらないのでしょうか?
太陽光やテレセントリック光学系の平行光が広がらない理由と、レーザー光線が広がらない理由とは、どのような関係にありますか?
レーザーポインタ等の光学系は、どのような考え方でできているのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

半導体レーザを使ったレーザポインタの光が広がらないなのと、大出力のガスレーザの光が広がらないのは理由が違います。



半導体レーザの光はかなり広がっています(出射光の半値全角は20度×45度くらい)。レーザポインタでは、この光をレンズでコりメートして、ほぼ平行になるようにしています。実際、レーザポインタの中には、半導体レーザとレンズ間の距離を微調整できるものがあって、これを変えると光が広がります(調整して広がりが最小になるようにする)。

一方ガスレーザ等の光はもともと広がりが小さいです。

半導体レーザとガスレーザで広がりが異なるのは、主として、出射端での光の直径(ビームスポットサイズ)が非常に異なるからです。半導体レーザのビームスポットは直径数マイクロメートルと非常に小さいのに対して、ガスレーザはその1000倍もの大きさがあります。小さいビームスポットから出た光ほど広がりやすい(回折広がりによる)ので、半導体レーザの光はかなり広がってしまいます。

半導体レーザもガスレーザも、互いに平行に置かれた鏡の間(共振器)を光が増幅されながら往復することで、レーザ発振している点では同じです。多重反射の間に、鏡の反射面と垂直な方向以外の向きを持つ光は同じ位置に戻ってこないので増幅されず、垂直な方向に進む光だけが選択的に増幅されます。その結果、共振器内部の光は反射面と垂直な方向に進む光だけになります。反射鏡の反射率は100%ではないので、反射鏡の裏面にも光は透過しますが、この透過光がレーザの出力になります。半導体レーザでは、共振器内部では光は平行なのですが、ビームサイズが小さいので、反射鏡の裏面から外部に出たところで広がってしまいます。

ここ(http://www.anfoworld.com/lasers.html)にレーザの構造と発振の原理や、広がりについても詳しく書かれています。
    • good
    • 1
この回答へのお礼

有難うございました。半導体レーザーも本来は平行光であるものがスポット径があまりに小さい為に回折で広がってしまうわけですね。リンク先もたいへん参考になりました。

お礼日時:2012/11/24 17:39

 大部分のレーザーは、活性媒質を2枚の鏡ではさむ形に構成されていて、媒質を励起して反転分布をつくるための装置がこれに付随しています。



 そのため図らずも、それが出射光の指向性を良くする機構になっています。2枚の鏡の間で繰り返し反射されている間に光の進む方向が自ずから決まってくるからです(幾何学的指向性と呼ぶ)。

 それでもレーザーは光の波である以上、出射後の光が回折現象によって広がっていくことは避けられません。レーザー光で、それが小さいのは、波長に比べて十分大きな範囲で、空間的に位相のそろった(空間的コヒーレンスが良い、と言う)光束となっているからです(物理光学的指向性と呼ぶ)。

 このような光束は適当な光学系によって、狭い面積に絞りこむことができます。

 そのコヒーレントですが、光の干渉ということが基本になって、これがなかなか複雑です。

 光は波動ですから、重ね合せの原理がどの光でも適用され、これによって生ずる干渉現象も必ず存在するはずです。

 ところが、異なる光源から出た光は干渉縞を作らないことや、同じ光源から出た光を二つに分けて光路差を与えて干渉させると、光路差が大きくなるにつれて干渉縞が不明瞭になり、ついには干渉縞が生じなくなることが知られています。

 干渉縞を生じない場合二つの光はインコヒーレント(incoherent、不可干渉)であると言い、一方、干渉縞を作るときはコヒーレント(coheren、(可干渉)と言います。後者の性質をコヒーレンス(coherence:可干渉性、あるいは干渉性)と呼びます。

 光が干渉することは光波の基本性質ですから、すべての光は干渉しなければならないのに、干渉する光とか干渉しない光とかいうのは、理屈ではおかしい。

 これは明らかに異なる意味の干渉という言葉を混用しているためです。つまり、単に干渉という場合の意味は、光の振幅を考え、二つの光を A、B と表せば、これらを重ね合わせたものが A+Bとなるという純粋に理論的なものです。

 ところが、光で使用する受光器は、すべて強度の時間平均を与える自乗検波器であるので、干渉縞が観測されるというのは、合成振幅の自乗の時間平均値Iが、各々の強度の時間平均値の和(I1+I2)と異なるかどうかを言っているものです。

 すなわち、振幅の時間平均強度は、I=〈|A+B|2〉=〈|A|2〉+〈|B|2〉+〈AB*〉+〈A*B〉=I1+I2+〈AB*〉+〈A*B〉ですから(〈 〉は時間平均を表し、A*、B*はそれぞれ A および B の複素共役量)、この式の第3、4項が0となるかどうかを言っているのです。

 第3、4項は二つの光の相互関係を表すもので、これを問題にすることがコヒーレンスについて論ずることを意味します。

 二つの光波 A、B が互いに相互関係がなく、第3、4項が0となる光をインコヒーレント光と言い、干渉縞は生じません。

 二つの光が互いに密接な関係があり、第3、4項が高い値で存在する場合の光をコヒーレント光といい、鮮明度の高い干渉縞が生じます。

 二つの場合の中間の状態の光、すなわち二つの光が少し関係がある場合には、第3、4項が小さい値で存在し、鮮明度の劣化した干渉縞が生じます。

 このような光を部分的コヒーレント光と言います。このように、光の場合には干渉ということと可干渉性との違いに注意しなければなりません。

 なお、レーザーをコヒーレントな光という場合、可干渉性のほかに、位相のそろった波形が長く保たれることも含めているも意味しています。

 この干渉が、光の広がりの原因の一つともなる回析現象となってきます。「なかなか複雑」と断ったのは、こういうことです。もし説明を続けるなら、延々と続けなければなりませんが、割愛します。
    • good
    • 1
この回答へのお礼

詳しい解説を有難うございました。

お礼日時:2012/12/03 00:07

広がらないのとコヒーレントであることは結果論であって、理由ではありません。


コヒーレントであっても放散する光はありますし、短期間で良ければ
コヒーレントでなくても直進する光もあります。

レーザー光は生成過程で結晶中を電磁波が数え切れないくらい往復して生成されます。
ですから、コヒーレントでない成分にエネルギーロスがあり脱落してコヒーレントに
なり、距離を進んでいるから見かけ上は放散しないようになっています。
太陽光も本来は放散光なのですが、虚位を進んだあとなので放散しないように
見えているだけです。
レーザー光でも100km単位ではかなり放散します。
    • good
    • 0
この回答へのお礼

有難うございました。レーザーは光が出てくる前に往復して長距離を進んでいるから、平行でない向きの成分は出て来る前に淘汰されてしまうわけですね。

お礼日時:2012/11/24 17:31

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qレーザのスポット径の計算式

自分が使用しているレーザの加工サイズ(スポット)径を計算式から算出したいと考えています.以前同様の質問に対し,mickjey2さんが丁寧に回答してくださったにも関わらず,自分の知識の無さから未だに解決していない次第です.式としては、
(1)スポット径w=4λd/πw0
         λ:波長
          d:対物レンズの焦点距離
         w0:レンズに入射するビーム径
(2)スポット径w=w0*{1+(λd/πw0^2)^2}^1/2
の2つがあることは分かったのですが,どちらを使用して良いのか分からないのです.実際に波長1064nm,焦点距離30.5mm,入射ビーム径1.5mmで計算したのですが,スポット径にかなりの違いが見られました.
それぞれの式はどのような条件の際に用いるものなのかどなたか教えてください.宜しくお願いします.
(どちらかがガウスビームの式なのでしょうか?)
最後にもう一つ,私の使用するレーザユニットはM^2~1.5と表記されています.ガウスビームとみなす事が出来るでしょうか?
         

自分が使用しているレーザの加工サイズ(スポット)径を計算式から算出したいと考えています.以前同様の質問に対し,mickjey2さんが丁寧に回答してくださったにも関わらず,自分の知識の無さから未だに解決していない次第です.式としては、
(1)スポット径w=4λd/πw0
         λ:波長
          d:対物レンズの焦点距離
         w0:レンズに入射するビーム径
(2)スポット径w=w0*{1+(λd/πw0^2)^2}^1/2
の2つがあることは分かったのですが,どちらを使用して良い...続きを読む

Aベストアンサー

ではすぐに計算できる形でご提供しましょう。
使用する式は加工用途のYAGレーザですからガウシャンビームの式の発展版を使います。(詳しくは大御所お二方の書かれた "Output Beam Propagation and Beam Quality from a Multimode Stable-Cavity Laser", Anthony E.Siegman, Fellow IEEE, and Steven W.Townsend, IEEE Jurnal of uantum Electronics, Vol.29, No.4, April 1993 でも参照下さい。)

平行な、半径r、BQFactorがM2、ビームを焦点距離fのレンズに入射したとき、ビームウエスト半径r0は、

r0 ^2 = { r^2 * f^2 / Zr^2 } / { 1 + (f/Zr)^2 }

ここで、 Zr = π * r^2 * n / {M2 * λ}

M2 : M^2 の値
λ : 波長
 n : 屈折率(空気中ならばほとんど1)

全部MKSA単位で計算すればOKです。
M2が1からはずれてくると段々と上式と実際のスポットには食い違いが生じてきますのでご注意下さい。(詳しくは論文を読んで下さい)

ではすぐに計算できる形でご提供しましょう。
使用する式は加工用途のYAGレーザですからガウシャンビームの式の発展版を使います。(詳しくは大御所お二方の書かれた "Output Beam Propagation and Beam Quality from a Multimode Stable-Cavity Laser", Anthony E.Siegman, Fellow IEEE, and Steven W.Townsend, IEEE Jurnal of uantum Electronics, Vol.29, No.4, April 1993 でも参照下さい。)

平行な、半径r、BQFactorがM2、ビームを焦点距離fのレンズに入射したとき、ビームウエスト半径r0は、

r0...続きを読む

QLEDは指向性の高い照明というのが一般的に流布しているようですが、指向

LEDは指向性の高い照明というのが一般的に流布しているようですが、指向性の根拠は砲丸型の素子形状由来との情報も目にします。となれば実際には志向性を持たせることが技術的に簡単だというだけで、指向性はLEDの根本的な特性ではないとの理解で間違いないでしょうか。あるいは光そのものにも指向性にかかわる特徴があるのでしょうか?

Aベストアンサー

LEDが指向性であるのは、その構造に理由があります。

対比するために白熱電球から説明します。
白熱電球は発光するフィラメントが支柱で支えられて宙に浮いています。
なので全方向に光を発することができます。

一方、LEDはシリコン基盤(カソード)上に発光部分(アノード)が平面的に構成されています。
シリコン基盤は光を通さないので、結果として白熱電球の半分の方向にしか光を発することができません。
従ってLEDは無指向性にすることの方が難しいのです。
複数のLEDを立体的に組み合わせることで無指向性にすることが可能ですが、
半導体製造時にはそれができないため、コスト高になります。

Q波の位相差のことで質問があります。

こんばんは。

位相差=(光路差/λ)×2πとなると教科書に載っていました。

ここで質問ですが、光路差をλで割った値の物理的な意味と、(光路差/λ)に2πをかけたら位相差になる理由がわからないので教えていただきたいです。

光路差/λで波の数を示しているのかとは考えてみたのですが、それに2πradをかけると...と考えていると混乱してきました。

物理学に詳しい方、申し訳ありませんがご教授ください。
お願いいたします。

Aベストアンサー

波の式は習いませんでしたか?
波長をλ、周期をTとしてこういう式です。

f(x,t) = A sin 2π(x/λ - t/T)

この式のサインの中身

2π(x/λ - t/T)

が位相です。xが波長λ変ると2πだけ変るしくみになっています。

なのでxがΔx異なっていれば位相の差は2πΔx/λで、これが位相差です。

Q波数の意味と波数ベクトル

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m]の波の波数はk1=1/100[m]となり、これは「100m中に1個の波がある」という意味であり、λ2=2[m]の波の波数はk2=1/2[m]となり、「2m中に1個の波がある」という意味で、いずれもk<1なのはどれくらいの割合で波が1つあるのかという事を表してるのだと思っています。k2は2[m]中に1つの波があるので、仮にその波を100[m]にも渡って観察すれば、その中に50個も波が存在する。一方、k1は100[m]内に1個しか波が存在しない。よってk2の波の方が波の数が多い波である。以上が波の「数」なのに次元が長さの逆数を取る理由だと解釈してるのですが、合っているでしょうか?

また、(正否は分かりませんが)波数kを以上のように考えているのですが、波数ベクトルという概念の理解に行き詰まっています。個数であり、長さの逆数を取る量がベクトル量で向きを持つというイメージが掴めません。本にはkx、ky、kzと矢印だけはよく見かけるのですが、その矢印がどこを基準(始点)としてどこへ向いているのか(終点はどこなのか)が描かれていないので分かりません。波数ベクトルとはどういう方向を向いていて、それはどういう意味なのですか?一応、自分なりに描いてみたのですが下の図で合っているでしょうか?(1波長置きに存在するyz平面に平行な面に直交するベクトルです)

私の波数の考えが合っているか、波数ベクトルが図のようで合っているかどうか、波数ベクトルとは何かをどなたか教えて欲しいです。

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m...続きを読む

Aベストアンサー

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このとき、x方向の波数は1、y方向の波数も1、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,1,0)
のように表すことができます。

さらに発展して考えたとき、x方向とy方向の波数が違っていてもいいですよね(下のリンクのような)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2B0.3*y^2%29%29
こうなるとx方向の波数は1、y方向の波数は0.3、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,0.3,0)
のように表すことができます。

このように波数ベクトルは、現実の波をx,y,z成分で分けたときのそれぞれの波長(λx,λy,λz)から求めたものなので、あくまで波がどういう形になるのかしか分かりません。
なので波の始点や終点という概念はありません。
この波数ベクトルの利点は、たとえば現実空間で
y=sin(1*x)+sin(2*x)+sin(3*x)+sin(4*x)+・・・+sin((n-1)*x)+sin(n*x)
を考えるととても複雑なグラフとなりますが、波数空間ではkx=1,2,・・・.nの点の集合として表すことができます。(よくいわれるスペクトル表示的なものです)



波数ベクトルを現実世界の何かとして考えることはあまりないので割り切ってしまった方が楽かもしれません。

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このと...続きを読む

Q開口数 NAって どんな数字のことですか??

レンズとかで 開口数 NAっていう数字を聞きますが、
(1)どんな意味なんでしょうか?

(2)その数字が大きいとどうで、小さいとどうなんでしょう?

(3)たとえば、一般的なものでは、どのくらいの数字が常識で
どのくらいの数字だと 限界だとか、すごいレンズだってことになるんでしょうか?

------

光学関係の本をちょっと見れば載っているのかもしれませんが、
不精ですいません。ここで質問させてください。


_

Aベストアンサー

NAの定義は、
NA = n * sinθ
です。(nは光路の屈折率)
いまレンズがあって、その先に焦点があるとします。
レンズを通った光が焦点に結ぶことを考えますと、レンズのどの位置の光も焦点一つに集まります。
ここで、レンズの両端から出た光が焦点に集まるとき、円錐状に光が集まる図を書くことが出来ますよね。
(イメージできます?円錐の頂点が丁度焦点です)
このときの、円錐を横から見た時の頂角が2θになります。
つまり、θは0より大きく、90度よりは小さくないといけません。
従って、NAも普通は0<NA<1の間の数値となります。
簡単には、焦点距離がfで、レンズの半径がrとすると、tanθ=r/fですから、これからθを求めてsinθを求めれば良いわけです。

さて、この数値は色んな目的に使われます。
一つは明るさです。一つの点から出た光は通常四方八方に進みますが、NAが大きいと取り込む角度が大きいので明るくなります。
もう一つは焦点深度です。NAが大きいと焦点から像がずれたときに、大きくぼけます。
最後に、解像度です。これの説明はちょっとやっかいですが、基本的に光は絶えず広がろうとする性質(回折)があると思って下さい。
そのため、もし非常に小さく絞り込もうとすると大きな角度θで絞り込まないと、光の広がろうとする性質がレンズに打ち勝ってしまって、絞り込め無くなります。

これまでの話で大体おわかりと思いますが、NAが小さい方は特別すごいことではありません。NAが大きい方はすごいことです。
用途によってすごさは変わってきますが、顕微鏡だと0.7位は特別ではないでしょう。0.8以上だと高解像度になってきます。
中には1.0とか、1を越える場合もあり、これはすごいことです。
ちなみに、1を越えるためには、光路を屈折率1以上の物質(実際には水溶液)でレンズと被測定対象物を満たしてあげます。

別の用途として、高精度レンズといえば半導体の回路を焼き付けるステッパー用レンズでしょう。これはNA=0.65位が普通、NA=0.7, 0.75だと高解像度、中にはNA=0.8という超高解像度のものもあります。

では。

NAの定義は、
NA = n * sinθ
です。(nは光路の屈折率)
いまレンズがあって、その先に焦点があるとします。
レンズを通った光が焦点に結ぶことを考えますと、レンズのどの位置の光も焦点一つに集まります。
ここで、レンズの両端から出た光が焦点に集まるとき、円錐状に光が集まる図を書くことが出来ますよね。
(イメージできます?円錐の頂点が丁度焦点です)
このときの、円錐を横から見た時の頂角が2θになります。
つまり、θは0より大きく、90度よりは小さくないといけません。
従って、NAも普通...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q検量線に吸収極大波長を用いるのはなぜですか?

Fe(II)イオンのo‐フェナントロリンキレート錯体の吸光度を測定し、横軸にFe(II)イオンの濃度、縦軸に吸光度をとって検量線を作成するという実験をおこないました。

この際、波長は吸収極大波長である510nmを用いたのですが、吸収極大波長を用いる理由は何でしょうか?

吸収極大波長以外の波長を用いると、何か不都合でも生じるのでしょうか?

お分かりの方がいらっしゃいましたら、ぜひ教えて下さい。

よろしくお願いいたします。

Aベストアンサー

まず、吸収極大波長を用いると感度が良くなります。よって、より低い濃度でも測定できます。
また、ノイズの影響を小さくする(SN比を大きくする)ことが出来ます。
あと、今回はおそらく関係ないかと思われますが、近い波長に吸収がさらにあると極大波長以外の場合、どちらの波長の吸光の影響が大きいか分からなくなります。


しかし、最大の原因は基本的に吸収極大波長で取るのが普通だからです。他で取ると、過去の知見を生かすことが出来ません。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q検量線の計算方法について

こんにちは。
現在HPLCを扱っております。検量線を使っているのですが
計算方法がよく理解できておりません。
【化粧品100g中に有効成分Aは何g含まれているか】を求めるものです。
まず、
標準品 0g、0.1g、0.3g、0.5g を精密に量り、全て精製水で正確に
100mlとします。この各液から、さらに1mlを精密に量りとり、精製水を
加えて正確に100mlとします。

試料は 1mlを精密に量り、精製水を加えて正確に100mlとしました。

ピークのAREAですが【標準品】
0.1g→ 574221
0.3g→ 1671182
0.5g→ 2717212
【試料AREA】は1738876 です。
Excelで検量線の計算式を出したところ下記のような式になりました。
y=5E+06x + 46962  R2 =0.9998

この場合、100g中に何g含まれているかを求めるには
どうしたらいいのでしょうか?
私なりに計算して四捨五入で0.3gとなったのですが
あっているでしょうか?

長くなってしまいましたが、教えてください!

こんにちは。
現在HPLCを扱っております。検量線を使っているのですが
計算方法がよく理解できておりません。
【化粧品100g中に有効成分Aは何g含まれているか】を求めるものです。
まず、
標準品 0g、0.1g、0.3g、0.5g を精密に量り、全て精製水で正確に
100mlとします。この各液から、さらに1mlを精密に量りとり、精製水を
加えて正確に100mlとします。

試料は 1mlを精密に量り、精製水を加えて正確に100mlとしました。

ピークのAREAですが【標準品】
0.1g→ 574221
0.3g→ 1671182
0.5g→ 27...続きを読む

Aベストアンサー

ちょっと整理するために長くなりますが、順番に書きますね。

1.まず検量線に用いた標準溶液の濃度をきちんと計算しましょう。
○標品 0g、0.1g、0.3g、0.5g
 →mgに換算すると0mg, 100mg, 300mg 500mg
○全て精製水で正確に100mlとする
 →濃度は0mg/ml, 1mg/ml, 3mg/ml, 5mg/ml
○1mlを量りとり精製水を加え100mlとする(100倍希釈)
 →濃度は0mg/ml, 0.01mg/ml, 0.03mg/ml, 0.05mg/ml
 →μgに換算すると0μg/ml, 10μg/ml, 30μg/ml, 50μg/ml

2.計算した濃度(μg/ml)を横軸xに、HPLCで得られた面積の値を縦軸yにしてグラフを描きます(エクセルならば散布図ですね)。
この時、0μg/mlの試料を分析したときの値も使いましょう(ピークが出ないのならば、面積は0とする)。

3.近似式を追加して検量線の式を計算させると、
   y = 54291x + 19103  R2 = 0.9997
となります。

4.これで検量線ができたので、未知試料を分析したときのピーク面積1738876をyの部分に代入して計算します。

5.xの値として31.6769...(μg/ml)と出てきます。

6.この値はあくまでも"分析した試料"の濃度です。目的としている化粧品1mlを100mlに希釈したものがこの濃度であることから、化粧品中の濃度は100倍して約3158(μg/ml)となります。mgやgに換算しなおすと、それぞれ3.2mg/ml、0.0032g/mlとなります。

7.もし【化粧品"100ml"中に有効成分Aは何g含まれているか】ということならば、単純に濃度に100mlをかけて、0.32gとなります。
ここで注意が必要なのは、【化粧品"100g"中に有効成分Aは何g含まれているか】となっていることです。厳密には100mlと100gは同じ量を表していません。化粧品100mlの密度(g/ml)が分かればこの値を0.32にかければ【化粧品"100g"中に有効成分Aの量】が出せます。密度が不明なときは、例えば100mlを正確に量り取ってから、その質量を精密天秤で測ってください。質量÷体積で密度が計算できます。

ちょっと整理するために長くなりますが、順番に書きますね。

1.まず検量線に用いた標準溶液の濃度をきちんと計算しましょう。
○標品 0g、0.1g、0.3g、0.5g
 →mgに換算すると0mg, 100mg, 300mg 500mg
○全て精製水で正確に100mlとする
 →濃度は0mg/ml, 1mg/ml, 3mg/ml, 5mg/ml
○1mlを量りとり精製水を加え100mlとする(100倍希釈)
 →濃度は0mg/ml, 0.01mg/ml, 0.03mg/ml, 0.05mg/ml
 →μgに換算すると0μg/ml, 10μg/ml, 30μg/ml, 50μg/ml

2.計算した濃度(μg/ml)を横軸xに、HPLCで得られた面...続きを読む

Q光ファイバーを使った通信ではなぜ1.55より1.31μmの波長が多くつかわれているのですか?

なぜ光ファイバーを使った通信では最も低損失といわれている1.55μmではなく1.31μmの波長が一般的に多く使われているのでしょうか?
某通信会社に勤務していますが、物理学的な知識は全くありません。

Aベストアンサー

ファイバは、直径15cmくらいのロッドを引き伸ばして作るので、1000kmでも10000kmでも注文に応じて作れると聞いたことがあります。
私はファイバ屋ではないので、どこまで本当か知りませんが。

「分散」は英語ではdispersionといいます。
分散シフトファイバはそのままDispersion Shift Fiberです。
# イギリス英語では、fiberではなくfibreなのでご注意。
零分散波長はよく知りませんが、やっぱりZero Dispersion Wavelengthでいいのかな?
私は光通信の部署には短期間しかいなかったし、そこから離れて随分経つので今の状況はよく分かりませんが、当時は分散についてここまで詳しく書かれた教科書はあまりありませんでしたね。
もしかしたら、今の教科書にはどれにでも当たり前に載っているかもしれません。
最新の論文が読みたければ、Photonics Technology Lettersなど、IEEEやOSA(Optical Society of America)などのサイトを検索すれば出てくるでしょう。

ファイバは、直径15cmくらいのロッドを引き伸ばして作るので、1000kmでも10000kmでも注文に応じて作れると聞いたことがあります。
私はファイバ屋ではないので、どこまで本当か知りませんが。

「分散」は英語ではdispersionといいます。
分散シフトファイバはそのままDispersion Shift Fiberです。
# イギリス英語では、fiberではなくfibreなのでご注意。
零分散波長はよく知りませんが、やっぱりZero Dispersion Wavelengthでいいのかな?
私は光通信の部署には短期間しかいなかったし、そこから離れて随...続きを読む


人気Q&Aランキング