現在公務員試験対策の為、予備校に通っていまして講師の方から分数の比較について教えて頂いたのですが、何度教えて頂いてもイマイチ分からず理解力の低さに呆れられてしまい、こちらの顔を見るなり避けられて教えていただけない状態です。ここへ質問を投げかけるのはどうかと思うのですがご教授願います。
※誹謗中傷はお控え下さい。
※質問の意味が分からなければお答えしないで下さい。
※ネット上、分数の表記が2分の1=1/2 になります。
☆分子が大きい→値は大きくなる。分母が大きい→値は小さくなる。(逆あり)
これは分かっています。
以下について分かりません。講師から教えて頂いた内容をそのまま入力します。
① 18/53 と 19/54 を比較する場合。
分子は18→19へ+1の増加をしている、分母は53→54へ+1の増加をしていることを確認する。
18/53は大体1/5とみると、19/54の方が大きい。←ここが意味分かりません。
18/53がなぜ1/5くらいになるのかが理解できません。また1/5でみたところで19/54が1/5より大きいとはどう比較するのでしょうか。※講師へ目安の分数がその数になるのかというピンポイントを聞いても、同じことを復唱されました。
② 25/123 と26/125 を比較する場合。
分子は25→26へ+1増加している、123→125へは+2増加していることを確認する。
25/123を大体1/60とみると、26/125が大きい。
このやり方が一番早く解けるとのことなのですが、できれば理解したいです。
またこの解き方以外は教えてもらっていないのですが、分母と分子それぞれの増加率を比べて、どちらが大きいかを判別するかやり方しか分かりません。例えば、①は分母分子どちらも増加している数値は同じなので、どうやって増加率を考えたらいいのでしょうか・・・。
No.5ベストアンサー
- 回答日時:
「18/53は大体1/5とみると」って、かなり乱暴な話で 納得できません。
分母子が 同じ数だけ増加すると、真分数の場合は、分数の値が 大きくなります。
仮分数の場合は 反対に 小さくなります。
これは 分数の性質上 明らかです。
② の場合も、分母子をそれぞれ -24 して比べると、
1/99 と 2/101 では 2/10 の方が明らかに大きいですよね。
つまり (1/99)<(25/123) で (2/101)<(26/125) となり、
(25/8123)<(26/125) は 明らかになります。
No.6
- 回答日時:
かなり乱暴な説明ですね。
面倒でも通分をして分子の大小で比較すればよいのでしょうが、面倒ですよね?
ここで
18/53と19/54を通分を考えてみます。
18/53=(18×54)/(53×54)
19/54=(19×53)/(53×54)
です。
これで18×54と19×53の大小を比較すれば良いのですが・・・・
ここでa>0,b>0の場合に
a+bが一定のときにabが最大になるのはa=bの場合で,|a-b|が大きいほどabが小さくなるという法則があるので、
19×53>18×54
となるので、(19×53)/(53×54)=19/54>(18×54)/(53×54)=18/53となります。
No.4
- 回答日時:
分数をm/n(m、nは自然数)として、元の分数と,新しい分数(元の分数の分子、分母をいくつか増加したもの)の大小関係を考えます。
(Ⅰ)分子、分母ともに1増加した場合
元の分数m/n、新しい分数(m+1)/(n+1)となります。
新しい分数から元の分数をひいてみます。
(m+1)/(n+1)-m/n={n(m+1)-m(n+1)}/n(n+1)=(n-m)/n(n+1)
したがって、nがmより大きい場合、すなわち、元の分数の分母が分子より大きい場合は、新しい分数が元の分数より大きくなります。
[たとえば、19/54>18/53]
(Ⅱ)分子を1、分母を2増加した場合
元の分数m/n、新しい分数(m+1)/(n+2)となります。
新しい分数から元の分数をひいてみます。
(m+1)/(n+2)-m/n={n(m+1)-m(n+2)}/n(n+2)=(n-2m)/n(n+2)
したがって、nと2mの大小関係により、新しい分数と元の分数の大小関係は変わります。
①n=2mのとき
すなわち、m/n=m/2m=1/2のときは、m/n=(m+1)/(n+2)
新しい分数と元の分数は等しくなります。
[たとえば、1/2=2/4]
②n>2mのとき
新しい分数が元の分数より大きくなります。
[たとえば、26/125>25/123]
③n<2mのとき
新しい分数が元の分数より小さくなります。
[たとえば、19/27<18/25]
(Ⅲ)分子をa、分母をb増加した場合
元の分数m/n、新しい分数(m+a)/(n+b)となります。
新しい分数から元の分数をひいてみます。
(m+a)/(n+b)-m/n={n(m+a)-m(n+b)}/n(n+b)=(an-bm)/n(n+b)=mn(a/m-b/n)/n(n+b)
分子、分母の増加率を考えるならば、分子の増加率[(m+a)/m=1+a/m]と分母の増加率[(n+b)/n=1+b/n]を比べて、
分子の増加率が分母の増加率より大きい場合、a/m>b/nとなり、新しい分数が元の分数より大きくなります。
[たとえば、①18/53と19/54のときは、19/18>54/53より19/54>18/53
②25/123と26/125のときは、26/25=1+1/25,125/123=1+2/123=1+1/61.5より26/25>125/123となり26/125>25/123]
No.3
- 回答日時:
なんか良くわからない話だけど、かなり聞き間違っていると思います。
1/5≒25/123のことだろうし
1/60≒2/123
の話だと思う。
18/53≒18/54=1/3 なのでどうやったって1/5は不自然。
25/123→26/125
ですけど、分子と分母が≒1:5 だから
分子1の増加に対して分母は5増加で
大体釣り合う。
分子1、分母2では分子側の圧勝。
しかし、いじいじ暗算するより
電卓叩いた方が速ぃですよ。
No.2
- 回答日時:
増加数が同じ場合、増加率はもともとの値が大きいほど小さくなる(もともとの値が小さいほど大きくなる)
10-->11と50-->51を比べると前の方が10%増加、後の方が2%増加。
分母、分子を同じ数だけ増加すると、(分子の方が小さい数なので)、分母の増加より、分子の増加の方が大きい。
従って、元の数より大きくなる。
No.1
- 回答日時:
>18/53は大体1/5とみると
おそらく 18 ≒ 10, 53 ≒ 50 と見たってことなんでしょうが、
そこまで雑な近似で 18/53 と 19/54 が比較できるとは思えません。
18/53 と 1/5 より、18/53 と 19/54 のほうが近いじゃありませんか。
その講師に指導された考え方は、頭おかしいとしか言えません。
>分母と分子それぞれの増加率を比べて、どちらが大きいかを判別するやり方
には、ちゃんとした数学的根拠があるし、十分速く判定できると思いますよ。
19/54 = 18(1 + 1/18)/53(1 + 1/53) = (18/53)(1 + 1/18)/(1 + 1/53)
> (18/53)(1 + 1/53)/(1 + 1/53) = 18/53.
を頭の中でやればいいんでしょう?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
【お題】 ・存在しそうで存在しないモノマネ芸人の名前を教えてください
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
初めて自分の家と他人の家が違う、と意識した時
子供の頃、友達の家に行くと「なんか自分の家と匂いが違うな?」って思いませんでしたか?
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
架空の映画のネタバレレビュー
映画のCMを見ていると、やたら感動している人が興奮で感想を話していますよね。 思わずストーリーが気になってしまう架空の感動レビューを教えて下さい!
-
分母の違う、分数の大小の判別法
数学
-
計算せずに、分数の大小を判別したい
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「分母を大きく」の意味
-
プラスとマイナスが混在した時...
-
アンケートの複数回答での割合...
-
word(2010)の数式入力で間違え...
-
虚数の逆数について教えてください
-
全部で何個のうち、今あるのは...
-
分母・分子について質問があり...
-
相関係数を計算しています。 そ...
-
数3の数列の極限で、有利化をす...
-
中学数学についてです!
-
分数 a/(a+b) の分母からaを消...
-
ネピア数eが2<e<3になるこ...
-
質問です。 -3の逆数って何で...
-
なぜ有利化しなくてもいいのか?
-
LOGを電卓で計算する方法は?
-
広義積分の問題です。。。
-
分母って何?
-
単位換算を教えてください
-
有理化しないといけない問題と...
-
√の計算
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「分母を大きく」の意味
-
プラスとマイナスが混在した時...
-
分母・分子について質問があり...
-
数3の数列の極限で、有利化をす...
-
なぜ√2分の10が5√2になるのです...
-
アンケートの複数回答での割合...
-
有理化しないといけない問題と...
-
【数学】パソコンの数学の分子...
-
質問です。 -3の逆数って何で...
-
中学数学についてです!
-
ネピア数eが2<e<3になるこ...
-
5'7って何センチ?
-
相対次数とは?
-
全部で何個のうち、今あるのは...
-
これは分母が0になるから分子も...
-
相関係数を計算しています。 そ...
-
√の計算
-
分数にマイナスをつける場合
-
分母って何?
-
虚数の逆数について教えてください
おすすめ情報