アプリ版:「スタンプのみでお礼する」機能のリリースについて

確率変数X,Yの確率密度関数がf(x , y)で
(x^2+y^2≦1且つx , y≧0の時)
8(x^2+y^2)/π

(上記以外の時)
0

という問に対し
(1)XとYの共分散
(2)XとYの相関係数を求めよという問いが分かりません…

どなたか教えてくださいお願いします…

A 回答 (4件)

共分散と相関係数の定義を確認して、計算するだけじゃん。


定義は知ってる?

とりあえず、
f(x,y) = 8(x^2+y^2)/π ≧ 0 で
∬ f(x,y) dx dy = ∬[x^2+y^2≦1,x≧0,y≧0] 8(x^2+y^2)/π dx dy
      = ∬[0≦r≦1,0≦θ≦π/2] 8(r^2)/π r dr dθ
      = ∬[0≦r≦1,0≦θ≦π/2] (8/π)r^3 dr dθ
      = (8/π) ∫[0≦r≦1] r^3 dr ∫[0≦θ≦π/2] dθ
      = (8/π){ (1/4)1^4 - (1/4)0^4 }{ π/2 - 0 }
      = 1.
f(x,y) は、ちゃんと同時確率密度関数になっている。

共分散:
Cov[X,Y] = E[ (X - E[X])(Y - E[Y]) ]
    = E[XY] - E[X] E[Y],
E[XY] = ∬ xy f(x,y) dx dy
   = ∬[x^2+y^2≦1,x≧0,y≧0] xy 8(x^2+y^2)/π dx dy
   = ∬[0≦r≦1,0≦θ≦π/2] (r cosθ)(r sinθ) 8(r^2)/π r dr dθ
   = ∬[0≦r≦1,0≦θ≦π/2] (4/π)(r^5)sin(2θ) dr dθ
   = (4/π) ∫[0≦r≦1] r^5 dr ∫[0≦θ≦π/2] sin(2θ) dθ
   = (4/π){ (1/6)1^6 - (1/6)0^6 }{ - (1/2)cosπ + (1/2)cos0 }
   = 2/(3π),
E[X] = ∬ x f(x,y) dx dy
   = ∬[x^2+y^2≦1,x≧0,y≧0] x 8(x^2+y^2)/π dx dy
   = ∬[0≦r≦1,0≦θ≦π/2] (r cosθ) 8(r^2)/π r dr dθ
   = ∬[0≦r≦1,0≦θ≦π/2] (8/π)(r^4)cosθ dr dθ
   = (8/π) ∫[0≦r≦1] r^4 dr ∫[0≦θ≦π/2] cosθ dθ
   = (8/π){ (1/5)1^5 - (1/5)0^5 }{ sin(π/2) - sin0 }
   = 8/(5π),
E[Y] = ∬ y f(x,y) dx dy
   = ∬[x^2+y^2≦1,x≧0,y≧0] y 8(x^2+y^2)/π dx dy
   = ∬[0≦r≦1,0≦θ≦π/2] (r sinθ) 8(r^2)/π r dr dθ
   = ∬[0≦r≦1,0≦θ≦π/2] (8/π)(r^4)sinθ dr dθ
   = (8/π) ∫[0≦r≦1] r^4 dr ∫[0≦θ≦π/2] sinθ dθ
   = (8/π){ (1/5)1^5 - (1/5)0^5 }{ - cos(π/2) + cos0 }
   = 8/(5π).
よって、
Cov[X,Y] = E[XY] - E[X] E[Y]
    = 2/(3π) - { 8/(5π) }{ 8/(5π) }
    = 2/(3π) - 64/(25π^2).

相関係数:
ρ = Cov[X,Y]/{ √V[X] √V[Y] },
V[X] = E[ (X - E[X])^2 ]
  = E[X^2] - 2 E[X] E[X] + E[X]^2 = E[X^2] - E[X]^2,
E[X^2] = ∬ x^2 f(x,y) dx dy
   = ∬[x^2+y^2≦1,x≧0,y≧0] (x^2) 8(x^2+y^2)/π dx dy
   = ∬[0≦r≦1,0≦θ≦π/2] { (r cosθ)^2 }8(r^2)/π r dr dθ
   = ∬[0≦r≦1,0≦θ≦π/2] (4/π)(r^5){ 1 + cos(2θ) } dr dθ
   = (4/π) ∫[0≦r≦1] r^5 dr ∫[0≦θ≦π/2]{ 1 + cos(2θ) }dθ
   = (4/π){ (1/6)1^6 - (1/6)0^6 }{ π/2 - 0 + (1/2)sinπ - (1/2)sin0 }
   = 1/3.
よって、
V[X] = E[X^2] - E[X]^2
  = { (1/3)^2 } - { 8/(5π) }^2
  = 1/9 - 64/(2π).
また、
V[Y] = E[Y^2] - E[Y]^2,
E[Y^2] = ∬ y^2 f(x,y) dx dy
   = ∬[x^2+y^2≦1,x≧0,y≧0] (y^2) 8(x^2+y^2)/π dx dy
   = ∬[0≦r≦1,0≦θ≦π/2] { (r sinθ)^2 }8(r^2)/π r dr dθ
   = ∬[0≦r≦1,0≦θ≦π/2] (4/π)(r^5){ 1 - cos(2θ) } dr dθ
   = (4/π) ∫[0≦r≦1] r^5 dr ∫[0≦θ≦π/2]{ 1 - cos(2θ) }dθ
   = (4/π){ (1/6)1^6 - (1/6)0^6 }{ π/2 - 0 - (1/2)sinπ + (1/2)sin0 }
   = 1/3.
よって、
V[Y] = E[Y^2] - E[Y]^2
  = { (1/3)^2 } - { 8/(5π) }^2
  = 1/9 - 64/(2π).
以上より、
ρ = Cov[X,Y]/{ √V[X] √V[Y] }
 = { 2/(3π) - 64/(25π^2) }/{ √(1/9 - 64/(2π)) √(1/9 - 64/(2π)) }
 = (150π - 576)/(25π^2 - 7200π).
    • good
    • 0

https://mathwords.net/doujimitudokansu

あ、やばい。周辺確率密度関数は求めなくて良いです。上のサイトに解き方が書かれています。
    • good
    • 0

とりあえずXとYのそれぞれの周辺確率密度関数を求めたら?

    • good
    • 0

あー。

楽しんでください。年末を、数式と共に。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!