電気のことも何も知らないので教えてください。また、電気の流れには直流と交流しかないのかどうかも知らないのですが・・・

このQ&Aに関連する最新のQ&A

A 回答 (5件)

直流と交流を混ぜたければ、たとえば直流電源、交流電源を直列につなげばできますよ。

ただし、実行すると電源にもう一方の電源の電圧がかかるので非常に危険だと思います。たぶん電源が発熱して壊れると思います。決して実行はしないでください。

直流でも交流でもない電流を見たいだけならば、もっと安全な方法として、非常に弱い電池とコイルと抵抗と電流計(検流計かも)をつないで、コイルに棒磁石を出し入れしてみてください。ファラデーの電磁誘導の法則により、電流計の針が0でないところを中心に振れると思います。弱い電池としてレモン電池などを使って見てはいかがでしょうか?思いついただけなのでうまくいくかどうかは分かりません。

よく考えたら電池が無くてもコイルだけですでに直流でも交流でもない電流になってます。まとまらなくてすいません。
    • good
    • 0
この回答へのお礼

家庭に入っている電源で実験はしませんのでご安心ください。ご示唆にしたがって何か実行してみようと思います。ありがとうございました。

お礼日時:2005/04/14 09:38

簡単に作るのであれば.


音声出力のB級PPに適当に電圧計をつなげは。
それとも.単層全波整流て簡単なへいこつかいろをつけて.
いっそのこと3そう全波整流で
    • good
    • 0
この回答へのお礼

少し勉強してみます。何か実験系統ができないといけないと思いました。

お礼日時:2005/04/14 09:40

混ぜ合わせることはできます。


直流と交流を混ぜると、「脈流」になります。
脈流とは、電圧が変動している直流です。直流が波打っていると思ってください。
交流に直流を加えることを「バイアスをかける」等とも言います。
    • good
    • 0
この回答へのお礼

ご教示ありがとうございます。電子の動く方向のようなものかと想像していますが、すこし勉強してみたいと思います。

お礼日時:2005/04/13 12:35

”混ぜ合わせる”との意味が良く分かりません。


また、どのような目的で使うのかも不明です。
電話線には、電話機を動かすために直流と音声信号、さらにADSLを使う際には、もっと高い周波数の信号をのせています。
ちょっと外れますが、交流に交流と言う事であれば、最近実験されている物に普通の電灯線に高い周波数(AMラジオより高い短波帯)を乗せてコンセントに差し込めば、電力とデータが一緒に取れる様な方式も考えられています。
    • good
    • 0
この回答へのお礼

ご回答有難うございます。これから勉強させて頂きます。

お礼日時:2005/04/13 11:22



先ずは、直流と交流の違いから勉強しよう!

参考URL:http://www.ntv.co.jp/megaten/library/date/02/02/ …
    • good
    • 0
この回答へのお礼

早速勉強します。どうもありがとうございました。

お礼日時:2005/04/13 10:38

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qコンバーター(交流→直流へ変換)へ直流電源を接続するとどうなるのでしょ

コンバーター(交流→直流へ変換)へ直流電源を接続するとどうなるのでしょうか?
また、インバーター(直流→交流へ変換)へ交流電源を接続するとどうなるのでしょうか?

Aベストアンサー

コンバータやインバータと言っても、
様々な種類があるので一口に語ることはできません。
また、機器の耐電圧や電源の性質によっても答えは様々です。

ブリッジ整流器に直流電圧を印加した場合、
出力は直流となるでしょう。

電圧の変換を伴う整流器(ACアダプタ)など、
初段にトランスを備えた機器の場合、
直流的にはショートとなり、発火するかもしれません。
実際はヒューズが飛んで終わりでしょう。

インバータに交流を印加した場合は
正常動作しないか、保護装置が働いて終わりだと思います。

以上はすべて電源電圧が機器の耐電圧を超えていないことが前提です。

Q電気の交流と直流(初心者

(1)交流のメリットは、電圧をコントロールしやすいのが良いのだ。・・と聞きましたが、どうして(直流に比べて???)交流は電圧をコントロールしやすいのですか?

(2)交流は電気が、もの凄い早さで、行ったり来たりするらしいですが、どうして逆流したりするのですか?

なるべく簡単な説明でよろしくお願いします^^;

Aベストアンサー

1:

http://ja.wikipedia.org/wiki/%E4%BA%A4%E6%B5%81

にもあるとおり、交流は変圧が容易であり、変圧は電磁誘導を使っています。
電磁誘導は磁束の「時間変化」が必要なので、直流電流ではダメなんですね。
この変圧器は高校物理教科書を参照してください。



2:電流のイメージは水流ですが、ホースの両端を水を流しっぱなしの二つの蛇口につないだ様子を想像してください。どちらか片方は水圧で外れますので、そこですかさず外れたホースをつなぎ直します。すると逆側が外れるので、そちらをつなぐ、、、と繰り返し、ホース内の水を行ったり来たりさせるのが交流のイメージです。

質問の答えは水圧(電圧)が交互にかかるからホース内水流(導線内電流)は行き来するのです。それだけ。

余談:

ちなみに水流の速さ(=電子の移動速度)はそれほど速くありません。しかし、水圧自体は光速程度で伝達します。

行き来させることで摩擦が発生しますが、このエネルギーを熱として利用すれば電熱ヒーターの完成です。ヒーターとしては、直流でも交流でも熱は出ますから、送電が簡単な交流の方を我々は利用しているわけです。

1:

http://ja.wikipedia.org/wiki/%E4%BA%A4%E6%B5%81

にもあるとおり、交流は変圧が容易であり、変圧は電磁誘導を使っています。
電磁誘導は磁束の「時間変化」が必要なので、直流電流ではダメなんですね。
この変圧器は高校物理教科書を参照してください。



2:電流のイメージは水流ですが、ホースの両端を水を流しっぱなしの二つの蛇口につないだ様子を想像してください。どちらか片方は水圧で外れますので、そこですかさず外れたホースをつなぎ直します。すると逆側が外れるので、そちらをつ...続きを読む

Q交流電化を直流電化にしたJR西日本

JR西日本は、交流電化の北陸本線:米原~長浜間と湖西線:永原~近江塩津間を直流電化にした。
交流電化は、高圧送電(20kV)の為、電送損失が少なく変電所も少なくてすむ。
(新幹線は交流電化だ)
直流電化は、低圧送電(1500V)の為、交流電化に比べて電送損失が大きく変電所を増設しなければならず、コストがかさむ。
都市内地下鉄の様な短距離路線なら直流電化がいいだろうが、なぜJR西日本は直流電化にしたのか?

Aベストアンサー

 新幹線のように、大出力の電車が16両編成など長大な編成で走るなら、使用電力も大きく特別高圧の25KVなどで電化しないと、1.5KV程度の高圧なら電線もかなり太くしなければならず実用的ではありません。しかし、在来線なら直流電化でも変電所間隔を数キロ毎に設ければ、問題ありません。
 昭和30年代~40年代は、交流電化がもてはやされました。それは、変電所間隔を直流電化なら数キロしか離せないのが、交流電化だと10倍くらい約50Km~100kmくらいの間隔にでき、変電所数が1/10以下にできるというのが最大の利点でした。当時の直流用変電所は、交流を直流に変換するのに、水銀式整流器が主力で、古いところは回転式変流機なども使われていました。水銀整流器は、真空ポンプで真空にしてから、補助電極でまず起動してから、本格的に運転になるなど、真空ポンプ取扱い、圧力計監視や各種バルブ操作、冷却水の循環など、人手に頼らないとできない、自動化や遠隔制御を行いにくく、このため各変電所には最低でも2名の係員を24時間配置しなければならず、最低でも1変電所につき6名の要員が必要で、山間部の変電所など、毎日の要員交替も移動に何時間もかかったりして大変でした。そんな時代ですから変電所が減るということは、人件費削減などでものすごくメリットがありました。
 しかし、現在の大半の変電所はシリコン整流器の採用や高性能遠隔制御・監視装置のおかげで、完全無人化されています。また、最近は高速度遮断機なども静止型となったり、コンプレッサーや循環ポンプも無しの自然対流型など省メンテの密閉型変電所も増え、変電所が多くても初期投資がかかるだけで、運転コストはあまりかからなくなっていますから、昔ほど変電所が少なくなるといったメリットは減っています。
 逆に、交流電化は車両が複雑で高価とか、離隔を大きく取らなければならないため跨線橋など高くしなければならないとか、近くの通信設備などに誘導障害を与えるおそれがあるとか、昔よりも近隣家屋が増えてきた場合、デメリットが大きくなりつつあります。また、北陸線は昼間の列車本数も多く、さらに夜行列車も運転されており保守間合いの少ない線区です。直流電化なら加圧状態で絶縁はしごを使っての活線作業も可能ですが、特別高圧の交流電化では、完全に停電しないと電車線の保守作業もできず、間合いの少ない線区では直流電化のほうが保守も楽な面があります。
 さらに、北陸線は電化してから40年程度過ぎ、電気設備も車両も老朽化した物が多く、交流電化のままでも大半の設備を老朽取り替えしなければならなかったと思います。それを、京阪神から直通運転するために直流電化に変更するという理由で、かなり地元などの負担で老朽設備の取り替えもでき、地元も鉄道会社もメリットのある良い施策だったと思います。
 

 新幹線のように、大出力の電車が16両編成など長大な編成で走るなら、使用電力も大きく特別高圧の25KVなどで電化しないと、1.5KV程度の高圧なら電線もかなり太くしなければならず実用的ではありません。しかし、在来線なら直流電化でも変電所間隔を数キロ毎に設ければ、問題ありません。
 昭和30年代~40年代は、交流電化がもてはやされました。それは、変電所間隔を直流電化なら数キロしか離せないのが、交流電化だと10倍くらい約50Km~100kmくらいの間隔にでき、変電所数が1/10以下にできるというのが最大...続きを読む

Q「コンデンサーでは直流は流れずコイルでは流れない」

「コンデンサーは極板の間が空いていますから直流は流れません。コイルは直流に対して只の銅線と同じになります。ところが交流になるとコンデンサーは電気がながれます。極板に電気を溜めたり出したりを繰り返すことで極板の間を電気が流れなくても導線には電気が流れるのです。コイルでは交流になると逆向きに誘導電流が生じて流れにくくなります。
まとめるとコンデンサーは交流をよく流すが直流を流さない、コイルは直流は流すが交流は流しにくいということになります。」このような回答をいただきました。ここのところが非常に素人のわたしにはわかりにくかったです。小学生にもわかる解説をお願いしたいのです。(私は小学生ではありませんが、知識レベルではそうです)

Aベストアンサー

 引き続きコイルと電流について,発見された性質をお話します。、
 つまりコイルに起きる自然現象を、どう暗記したら、文章に書き止められた、よいだろう、と頭を
ひねって考えた人が現れました。ファラデー氏とレンツ氏の2人です。

 本人に聞かなければ分かりませんが、コイルも不思議な現象を感じ取ったからです。心境は本人に聞かなければ分かりません。

 結論にもって行きます。
 レンツ氏が言い当てた、コイルに電流が流れる際の癖(人間並みに表現しておきます、つまり性質、特徴です)を、言い当ててくれました。
 コイル状回路に電流が流れるときの自然現象ですから、当然これは、地球の自然や宇宙を作った自然創造の神様の設計(アイデア)なわけです(私の持論)。
 これを神様に作られた人間レンツ氏が、何とかして、コイル電流の癖を覚えて、再現、工夫、操りたいと考えたわけです。
 ファラデー氏はコイルの電流を切断した際に火花を発生する不思議な現象(神様のアイデア)を見つけていて日本語訳で、このコイル電流の性質(くせ)を電磁誘導と名づけているものですが、ファラデーさんの電磁誘導の記憶法(暗記文=科学知識=ファラデーの法則)は省略し、レンツ氏が(私たちに代って)言い当ててくれた暗記文で紹介します。

 彼は「神様は変化を好まないようだ」。
と言う人間表現(彼は人間ですから)をしています。
実験を試みているうちに、このインスピレーションが働いたものと私は考えます。
 そうして、具体的に、
私のこまい代弁説明に入ります。
 コイルに電流が流れると、中を大量の磁力線が突き抜けて発生しますね。この磁力線(磁石を動かす透明な力を線で表したもので、磁力線の表現はファラデーさんの発想で、おかげでその後電磁気学の科学が発展する元になったものです、省略)はコイルの外を回って、コイルの中の磁力線とつながっていているものですから、
コイルと磁力線は、ちょうど2つのリングが「鎖」や、「チエの輪」状に交差した関係にあります。
この鎖状の交差(鎖交、さこうと言っておきます)関係にあるとき、磁力線が減少すると、

 ●例えば、今100本交差していた磁力線が90本に減少減すると、コイルの中で、10本分の磁力線を発生する電流を流して現状の100本を維持しょうと、あたかも人間の意志が働くかのように、瞬間、10本分の電流にあたる逆向きの電圧(逆起電力とも言う)を発生するのだ。と記憶する方法を考え付いたのです。つまり言い当てたのです。
  
 逆に、磁力線が90本から100本に増加したときは、その瞬間、★あたかも、増加分の10本を減らして90本の現状維持を保持しようとするかように、10本分の電流を流すに相当する反対する電圧(逆起電力)を発生している。
 
 と記憶法をしておくと、誰がやっても、コイルノ現象を理解できるし、間違いなく利用できるし、コイルを取扱える。と言う暗記説明文がレンツの法則と言う科学知識です。
 田中さんたちノーベル賞博士たちと言えども、全く同じこの覚え方をしているのです。これ以上ほぐせません。いいですね。

 ★「注」探究心のある人は疑問を持ったら困りますので、説明しておきます。
 コイルの中を突き抜けて鎖交する磁力線は、

 (1) 雷や工場の溶接の火花放電の電流で発生して、よそから飛んで来てコイルに交差する電磁波と言う名前のよそから飛んできてコイルに交差する、高い周波数の磁力線と、
 (2) 自分のコイルに流れる電流で作られて交差している磁力線

の2種類ありますが、両者共に、レンツ(ファラデー)の法則が当てはまるのです。

 よそから入ってくる磁力線で電気回路に交差して電圧を発生して電流を流す現象には、ラジオやテレビの雑音として映像かく乱?回路をショートさせて焼き切りなどします。
 自分のコイルに交差する自分の電流を増減させて磁力線を変化させるときも、自分のコイルに交差する磁力線を変化させるので、結果的に自分のコイル内に電流変化をジャマする(妨げる)反対向きの電圧を発生し電流の増減の変化を遅らせることも確かめられています。
 
 コイルと、コンデンサー、抵抗体に流れる電流の特徴は、電気の重要な大元の大事な基本知識ですから(こまい枝葉の難しい数式を使った技術知識と違います)
 コイルについて、もう少しイメージできるように説明します。おそらく、これ以上数式を使わない一貫した説明は、誰も話してくれないでしょう。
 あなたの引用した「一足飛びの結果の知識では、理解にも納得にもならないだけでなく、イメージできませんから、自信を持って応用できません」。

 レンツの法則を発展させたイメージできるコイルの癖の覚え方。
 レンツさんの、法則を科学式で表現し、コイルの中に発生する逆起電力の値を出せるようになっています。
 その式は、まさにニュトンの、加速度と力の原理、作用と反作用の力の法則の関係と全く同じなのです。 別名慣性とも言い、一度動き出している重さを持った物体は、止めようと反対方向の力を加えてもすぐには止まらない、惰性とも言います。反対に、スターとさせる場合を考えると、すぐには目的の速度に到達しない。あれです。

 両式をあわせると、 コイルの巻き数と磁力線を掛算した数値を交差数とすると、交差数が、丁度物体の惰性の原因である ★★★重さに相当するのです。

 ● 交差数があなたの体重さに相当する。いいですね。

 コイルに電流を流そうとして最初に100ボルトの直流電圧を加えて、50回巻きのコイルに2アン流しますと、500x2=100が電流の重さになります。

 ★注 0アンペアから2アンペアになるまでは、電流が変化し続けますから、磁力線が増え続けているわけで、このときもレンツさんの逆電圧(または逆起電力と言う)が働いて、電流増加を遅らせています。


100Vを90V,80V,と減らしていきますと、毎瞬間逆起電力(反作用による反動)が発生し電流変化を減らしおくらせます。

 ●申しおくれましたが、磁力線交差数(巻数X磁力線数=電流の重さ、ですから、電流が小さくても巻き数を多くすると電流を重くできます。巻数少なくても磁力線を作る電流を多く流すと電流が重くなります。
 そうして、ファラデーの法則(事実に対する発見した暗記文、磁力線の交差数の変化が激しいほど、つまり、時間的本数変化が大きい程コイル内に誘導する電圧(逆起電力=誘導電圧)が強大になると言うのがファラデーさん の暗記知識です。
 これを、電気回路に当てはめますと、一番磁力線の時間的変化を大きくできる操作は、電流を切断してゼロにするときです。
(スイッチを入れて電流を流す時は全然だめ。}
 このとき凄い電圧を発生しますから、コイルのある回路を切断して時高い電圧で、切れた間隙に電流を流し火花放電になるのです。自動車のガソリン点火時の火花発生はこれです。蛍光灯の点灯時の高圧発生も、この応用です。切れ方が悪いと高電圧は発生しません。時間が有りませんので
 結論を急ぎます。
 今、交流電源に接続してコイル(巻数関係)に電流を流すことを考えます。
 と必然的に磁力線が発生して交差し、コイル巻数X磁力線=交差数で、電流に重さ(惰性力)を持ちます。(専門は磁束交差数=電流の重さを持ちます。

 交流ですから、重さを持った電線電流をを左右に方向転換させようとします。重さによる慣性がありますから、すっかり動かせないうちに(電流を増加させきれないうちに)反対方向に重さのある電流を反対方向に流そうとするわけです。前と同様十分電流が増加させられないうちに方向転換というわけです。この重さ=慣性力=または惰性の力が、交流電流に対してコイルが重さを持たせて、左右の方向転換をさせずらくする電流制限作用です。言い換えるとコイルが示す交流の抵抗作用で値はオーム数(リアクタンス)で現します。これに電流の波を送らせて変化させると言う、同時作用(時間不足で説明省略)というものです。
 交流の1秒間の往復回数を周波数と言いますが、周波数の大きい交流ほど、電流が動ききれないうちに方向転換を迫られますから、ますます交流電流が小さくなります。
 同じ交流電圧を加えても50ヘルツより100ヘルツ、1万ヘルツと周波数が大きい交流ほど方向転換を早く迫りますから、ますます動けず、流れる電流が小さく制限されてしまいます。
 交流に対するコイルの抵抗は周波数に正比例して大きくなります。
 関心がありましたら、あなたでも周波数を使って計算できる式があります。以上をイメージしながら勉強してはいかがでしょう。
 急ぎましたので、文字変換その他で不備があると思います。

 引き続きコイルと電流について,発見された性質をお話します。、
 つまりコイルに起きる自然現象を、どう暗記したら、文章に書き止められた、よいだろう、と頭を
ひねって考えた人が現れました。ファラデー氏とレンツ氏の2人です。

 本人に聞かなければ分かりませんが、コイルも不思議な現象を感じ取ったからです。心境は本人に聞かなければ分かりません。

 結論にもって行きます。
 レンツ氏が言い当てた、コイルに電流が流れる際の癖(人間並みに表現しておきます、つまり性質、特徴です)を、言...続きを読む

Q直流電流と交流電流のこと

直流電流と交流電流について調べていて、蛍光灯を直流と交流でのつき方の違いを見てみようと思いつきました。
      ______
     =|       |=
       ̄ ̄ ̄ ̄ ̄ ̄
     ↑こちら側だけ使う
10w位の蛍光灯の片側にある2本の端子(?)にそれぞれワニ口クリップをつなぎ、電源装置を使って徐々に電圧をかけていきました。
ある程度まで電圧をかけていくと、交流ではチカチカと点滅して、直流では中のフィラメントあたりが赤くなりしばらくするとパッと点灯して、蛍光灯の片側が光っている状態になりました。

両方(交流、直流)を点灯した状態から徐々に電圧を下げていくと、交流ではチカチカと点滅した状態が続き、直流ではうすく光っている状態になりました。
・この交流でのチカチカと点滅するのは、電源が交流だからなのでしょうか、それとも放電現象によるものなのでしょうか?
・直流でフィラメントが赤くなるのはなぜなのでしょうか?
この二点について教えてください。お願いしますm(__)m

Aベストアンサー

予想外の面白い実験ですね。実際の動作原理とは、違う実験です。
蛍光灯は、片側の電極からもう一方の電極に放電することにより、管内面の全体に塗られた蛍光物質に電子が衝突することで、蛍光を発します。
両側のフィラメントは、点灯させる最初だけ通電し熱で水銀を蒸発させる為に使用します。
点灯後は、フィラメントは開放して通電をさせません。
交流では、フィラメントへの通電を切る時に回路に直列に入っているリアクターの誘導作用で高圧を一瞬出して放電を開始します。
直流では、電池の電圧をインバーターで昇圧するようにします。

そこで、ご質問の交流の場合には、片側のフィラメントだけの通電ですので、放電の為の空隙がありませんから、放電はしないものと思います。
蛍光が光るとしたら、それは、フィラメントの熱による熱電子放射だろうと思います。反対側に電極が無いので周辺だけに極弱く放射され不安定に光るのでしょう。
これは、不安定で断続的です。
直流の時に赤く光るのは、フィラメントの熱による発光でしょう。連続して光ります。
実験をしたわけではないので、推論です。

予想外の面白い実験ですね。実際の動作原理とは、違う実験です。
蛍光灯は、片側の電極からもう一方の電極に放電することにより、管内面の全体に塗られた蛍光物質に電子が衝突することで、蛍光を発します。
両側のフィラメントは、点灯させる最初だけ通電し熱で水銀を蒸発させる為に使用します。
点灯後は、フィラメントは開放して通電をさせません。
交流では、フィラメントへの通電を切る時に回路に直列に入っているリアクターの誘導作用で高圧を一瞬出して放電を開始します。
直流では、電池の電圧をイン...続きを読む

Q直流と交流の違いはなんでしょうか?

直流は,感電しないのに,
交流は感電するのかが
わからないのですが,どちらも
電流は流れているのに.
知識のある方はその違いを
教えてください.
直流でも感電はするのでしょうか?

Aベストアンサー

まず、直流だって感電しますよ。
交流は電流の強さが一定の周期で増えたり減ったりしているのです。直流は常に一定の電流が流れています。
ではどうして直流ではなくて交流を使うかというと、それは交流だと電圧を自由に変えられるからです。電気は遠くまで電線を通じて流すとその間にエネルギーを無駄使いしてしまうのですが、電圧を上げておくとその無駄使いが大変少なくなるのです。しかし一般家庭にそのままの電圧で持ち込むと大変危険なので、入る前の電柱のところで電圧を100Vに下げて安全を図っているのです。このような操作は直流ではなかなか遣りにくいのです。

Q【電気】ACアダプターって交流を直流に変えているんですよね?DCコンバーターは直流を交流に変える機器

【電気】ACアダプターって交流を直流に変えているんですよね?DCコンバーターは直流を交流に変える機器ってところかな?

ACアダプター 交流→直流
DCコンバーター 直流→交流

ところで携帯電話のACアダプターって無茶苦茶小さいですよね。

iPhoneのACアダプターなんてサイコロサイズです。

でもPCのACアダプターは筆箱サイズですよね。

同じ交流を直流に変える作業で同じなのになぜ大きいACアダプターと小さいACアダプターがあるんでしょう。

ACアダプターの中では交流を直流に整流している整流器が入っているんですよね?

整流器って交流を直流に変えるのにどうやって変えているんでしょうか?

コンデンサに一旦、蓄電させて放電させる繰り返しだとこれってプチプチ電気が途切れ途切れに送られるので交流のままなんじゃと思ったけどコンデンサで-の向きの交流を全部カットして、というか無視する回路で+だけをコンデンサに蓄電して放出させれば常に+の直流が作れる。

ACアダプターもこういう理屈で動いているんですか?

とすると交流のーの電気を全て捨てているので50%を浪費して動作していることになる。

そんなバカな仕組みじゃないですよね?

バカな仕組みがコンパクトに繋がっている?

iPhoneのACアダプターは浪費志向でPCのACアダプターはーの電気も+にすることが出来る機能が付いてるから馬鹿でかいの?

ACアダプターの動作の仕組みと原理が知りたい。

教えてください。

【電気】ACアダプターって交流を直流に変えているんですよね?DCコンバーターは直流を交流に変える機器ってところかな?

ACアダプター 交流→直流
DCコンバーター 直流→交流

ところで携帯電話のACアダプターって無茶苦茶小さいですよね。

iPhoneのACアダプターなんてサイコロサイズです。

でもPCのACアダプターは筆箱サイズですよね。

同じ交流を直流に変える作業で同じなのになぜ大きいACアダプターと小さいACアダプターがあるんでしょう。

ACアダプターの中では交流を直流に整流している整流器が入っている...続きを読む

Aベストアンサー

AC100Vの交流からDC5VとかDC9Vの直流に変換するACアダプターの構造・原理によって、大きさも重さも変わってきます。

古くからあるACアダプターでは、内部にトランス(鉄の塊みたいなもの)を組み込んであるので、どうしても大きく重くなります。ですが、このタイプのACアダプターはスイッチング雑音を出さないので電源の質としては優れており、ノイズに弱い精密電子機器には向いています。

でも大きくて重いACアダプターは使う側からするとありがたくないので、トランスを使わないACアダプターも出ていて、こちらは小型軽量になります。

いずれにも内部にはまず整流器(ダイオードをブリッジにしたもの)があって、これで交流を整流(全波整流)すると電圧が脈を打ったような直流になります。それでは使えないので、コンデンサにDCの電気エネルギーを蓄えたり引き出したりします。脈を打った電圧の高いときにコンデンサに電気エネルギーを蓄えながら使い、脈の低い(電圧の低い)ときにはコンデンサに溜まった電気エネルギーを引き出して使います。そうすると脈を打った電圧は平滑されるんです。

たとえて言うなら、私たちが日々使う生活費は、毎月1回ある給料でまかなっていますよね。つまりお金が瞬時にたくさん入って、その後はしばらく入金がありません。云わばお金が入るのはひどく脈打っています。でも1ヶ月の生活のことを考えて、入った給料は一度にドバッと使い切るのではなくて、財布に溜めたり預金したりして貯め、少しずつ引き出して均等に使っているでしょ。つまり財布や預金がコンデンサーのようなバッファーになって、出るのを均しているわけ。それと同じ理屈です。

こうして均されてDCになった電圧は、スイッチングレギュレータなどを使って所定の(一定の)電圧にレギュレーション(安定化)します。

AC100Vの交流からDC5VとかDC9Vの直流に変換するACアダプターの構造・原理によって、大きさも重さも変わってきます。

古くからあるACアダプターでは、内部にトランス(鉄の塊みたいなもの)を組み込んであるので、どうしても大きく重くなります。ですが、このタイプのACアダプターはスイッチング雑音を出さないので電源の質としては優れており、ノイズに弱い精密電子機器には向いています。

でも大きくて重いACアダプターは使う側からするとありがたくないので、トランスを使わないACアダプターも出ていて、こち...続きを読む

Q交流の許容電流を直流に換算する場合の…

直流の許容電流を知りたいのですが交流の√2倍と考えて問題ないでしょうか?

交流の許容電流は内線規程に記載されているのですが、
直流の許容電流についての資料がなく困っています。

絶縁強度が同じ場合、直流は交流電圧の√2倍まで送電できるので
電流の送電も同じく√2倍が可能という考え方でよろしいでしょう
か?
よろしくおねがいします。

Aベストアンサー

交流の電流値は、実行値です。
この実行値は、直流電流を流した場合と同じ仕事をした値とされています。
つまり、交流(実行値)=直流になりますので、同じ値だけしか流せません。

ちなみに、絶縁強度についてはこれが当てはまりません。
交流の最大値は実行値の√2倍なので、直流の√2倍の電圧に耐える必要があります。
実際、同じ定格電圧の場合、直流送電は交流送電より耐電圧性に優れるとあります。

Q直流モーターと交流モーター

直流電源を交流モーターに印加するとモーターは動きませんが、交流電源を直流モーターに印加すると動くときがあります。それはなぜでしょうか?

Aベストアンサー

交流でも回る直流モーターは界磁も電磁石になっているブラシモーターです。
ブラシモーターは常に界磁と回転子が反発引き合い回転するようにブラシが回転子の電流を切り替えます。
直流の場合界磁は一定のSN極ですが、交流の場合、回転子と界磁が同時に切り替わり、ブラシによる反発引き合いの関係が保たれるので直流でも交流でも回転します。
界磁が永久磁石の直流モーターは、回転せず振動するだけです。
また、交流専用のモーターは交流によって生じる回転磁界で回転する仕組みなので回転しません。

Q直流電源と交流電源についての質問へ答えた方へ

No289384で蛍光灯の片側のフィラメントへ直流電源と交流電源をかけた場合について質問されていましたが、その中で少し気になる点があります。

片側のフィラメントに電圧をかけただけですので、もう片側のフィラメントをアースとるとかしていなければ、「放電することは無い」のではないでしょうか。
ですから、質問者対しては、フィラメントの発熱(光)の状況がが交流(断続的 発熱する回数が50回もしくは60回)と直流(連続的に発熱)の状態を説明するのが正しいのではないでしょうか。

もし、放電しているのなら次第に放電電流が増加してゆき、次第に短絡状態になるはずです。理論は省き、その放電電流を安定させるために安定器が蛍光灯器具にはついています。もちろん、電子式のものでも、サイリスタ回路により〃特性を持たせ安定させているはずです。

その変についてご教授をお願いいたします。

Aベストアンサー

そうですねおっしゃる通りかと思います。
単にフィラメントへ電流を流す事による発熱により発光していると思います。

蛍光灯の原理はお書きの通りかと思いますので、説明の仕方が悪かったでしょうか。


人気Q&Aランキング

おすすめ情報