
No.1ベストアンサー
- 回答日時:
(1)
合ってます。ただ、qとかQとかテキトーにしないで。
(2)
合ってます。蛇足ですが、(c-b)は薄いようですから、感じとし
て、q/(2πε₀b)<2q/(2πε₀c) のように書いた方が、良いかも。
また、最終的に q+q とは書かない(はず)。
aにqを与えると、その電界は -qに行きます。つまり、bには-q
の電荷が表れます。すると、cには合計2qの電荷が表れます。
以上により
E=0 (r<a, b<r<c)
E=q/(2πε₀r) (a≦r≦b)
E=2q/(2πε₀r) (c≦r)
(3)
内外導体が同電位となるように電荷が移動する。つまり、
a≦r≦b では、E=0 (aのqがbの-qに移動して、ともに0となる)。
しかし、全体としての2qは変わらないから、cの電荷は2qのま
まとなる。
つまり
E=0 (r<c)
E=2q/(2πε₀r) (c≦r)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 電磁気 肉厚が極めて薄く、無限に長い半径aの円筒状導体に定常電流が一様に流れ ている。 アンペールの 3 2023/07/13 12:36
- 物理学 同心球導体についての問題です。 (1)内球に電荷Q1、外球に電荷Q2としたとき、電界の大きさと距離r 4 2023/05/31 18:57
- 工学 内半径α, 外半径b, 長さlの同軸円筒導体の間に導電率σの媒質を充填したとき,外筒から内筒に向けて 1 2022/07/18 03:52
- 物理学 内半径b,外半径cの円筒導体の中に半径aの円柱導体が入っている。それぞれの導体に逆向きの電流が流れて 2 2022/11/13 22:14
- 工学 面積Sの円形導体板を間隔dで平行に配置したコンデンサの問題てす。 (1)静電容量C0をSもdとε0を 1 2023/05/31 19:07
- 工学 至急お願いします。 誘電体と接する導体表面に面密度のσ正の電荷を一様に与えると、境界面には応力が発生 1 2022/07/31 02:27
- 物理学 静電遮蔽された導体球殻中心の電位 6 2023/05/26 23:49
- 物理学 (3)は導体円柱それぞれをオームの法則を使って E=λ/2πε×(1/x -1/(d-a)) (4) 2 2023/04/14 20:02
- 物理学 中心を同じに点に持つ半径aの導体球(導体1)、内半径b、外半径Cの導体球殻(導体2)があるとして、導 1 2023/08/12 23:36
- 物理学 半径4.0cmと10cmの誘導体で仕切られた同心円筒形の導体の表面にそれぞれ逆向きに電流1.0Aを流 1 2022/12/23 13:12
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
人体をコンデンサとみなせる理由
-
導線で繋がれた極板はなぜ等電...
-
静電遮蔽された導体球殻中心の電位
-
電磁気学の問題です。 磁束密度...
-
単位「cond」とは?
-
直線導体の巻数は、半径が無限...
-
白熱電球に使われているフィラ...
-
電圧とは?
-
導線は電圧が0でも電流が流れ...
-
CVの電流と温度上昇の計算方法
-
磁性体は導体か
-
はく検電器の同電位について
-
電界緩和用シールドリングについて
-
下の写真の図のように3枚の無限...
-
電磁気の問題
-
電束密度についてご質問があり...
-
電磁誘導についてなのですが、 ...
-
内部インダクタンスの計算方法...
-
1図のような同心球導体系の電位...
-
電気磁気の問題です
おすすめ情報