
No.1ベストアンサー
- 回答日時:
磁束密度のベクトルをB’としておきます(以下、ベクトルにはプライム・・・ダッシュのことですね・・・を付けますね)
アンペールの法則の微分形は
<導体板内部>
rotB’=μ0・i’ i’:電流密度のベクトル
<導体板外部>
rotB'=0
まず、導体板内部から考えましょう。
問題から i’ はx軸方向にしか流れていないので、i’ のx成分i’x=i です。
したがって、x成分だけ考えると
(rotB')x=μ0・i (rotB')x :rotB' のx成分
です。したがって、
dBz/dy ー dBy/dz = μ0・i Bz、ByはそれぞれB'のz成分、y成分 d/dyなどは偏微分と見てください
ここで、
Bz=0 何故かというと、導体板は無限に広いので、z軸方向のBを打ち消す2点が必ず存在するからです
ですので、
ー dBy/dz = μ0・i
したがって、
By= ーμ0・i・z + c c:定数
問題には対称性がありますので c=0 ですね。
∴ By= ーμ0・i・z
次は、導体板外部です
ー dBy/dz = 0
したがって、
By=c' c':定数
ここで、z=d のき、導体板内部の式から、By= ーμ0・i・d だから、c'= ーμ0・i・d
zが負の時も同様に考えて、
By= ーμ0・i・d (z ≧d)
By= μ0・i・d (z≦ ーd)
あとは、結果をベクトルの形にすれば解答です。
尚、解答があっているという保証はできかねますので、
あくまで参考として見てください。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
教えて!gooグレードポイントがdポイントに変わります!
dアカウント連携を行っていただくと、グレードに応じて「dポイント」が進呈されるようになります。
-
電磁気の問題
物理学
-
アンペールの法則の使い方について
物理学
-
電気磁気学の問題です。
物理学
-
4
電磁気分野における導体板に流れる磁場の大きさに関する問題です。次の問題、正答は1なのですが、どうやっ
物理学
-
5
e^(x^2)の積分に関して
数学
-
6
無限に長い円筒の側面上に電荷が一様な面密度
物理学
-
7
電磁気学(電場を求める)
物理学
-
8
電気磁気学で抵抗
物理学
-
9
線電荷密度ρの半径Rの無限長の円柱の電場ってどうなりますか?
工学
-
10
電荷が球殻内に一様に分布する問題について
物理学
-
11
複素解析で、極の位数の求め方
数学
-
12
電磁気学の問題
物理学
-
13
電磁気学に関しての問題です。
物理学
-
14
導体球殻の電位
物理学
-
15
電磁気学の問題です。 磁束密度が一様な静磁場の中に半径aの金属円盤を磁場に垂直に置き、円盤の中心を軸
物理学
-
16
どうしてソレノイドの外側には磁場ができないのですか?
物理学
-
17
質問です。z = 0,z = zに,x - y平面に平行な無限に広い導体板がおかれている。z = 0
物理学
-
18
半径aの球内に電荷Qが一様に体積分布している時のEとVを求める問題なのですが、 なぜ写真の2つの青線
工学
-
19
電磁気学の問題
物理学
-
20
同心球導体球の接地について
物理学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
電磁誘導についてなのですが、 ...
-
5
円筒の電荷密度
-
6
等電位線について
-
7
円柱導体の表面の電位について
-
8
空気の絶縁耐力について
-
9
はく検電器の同電位について
-
10
電磁気学の電位の問題で、この...
-
11
太さが無視できる細い導体でで...
-
12
人体をコンデンサとみなせる理由
-
13
電磁気学の電位係数の問題なの...
-
14
単位「cond」とは?
-
15
クーロンの法則で 導体球A、Bが...
-
16
円筒導体の磁界の強さ
-
17
電磁気学
-
18
ローレンツ力の説明で 画像のよ...
-
19
ビオ・サバールの法則の式の意味
-
20
等電位線と電気力線という実験...
おすすめ情報
公式facebook
公式twitter