写真の定理4-5の証明についてですが、なぜ赤線部のように0<x<1/a'と範囲を定めるのですか?
またa'=max{a,1}の1というのはどこから出てきたのですか?
青線部にF,Gを定理4-4に適応したら定理4-5か示せるとのことですが、この途中式?がわからないです。
以上の2点について回答おねがいします。
写真: https://d.kuku.lu/we7czu5ke
A 回答 (1件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
定理4.4に適応させるために
0<x<1/a'
と範囲を定めるのです
a'=max{a,1}
とするのは
1/a'
の分母a'が0以下にならないように
a'=max{a,1}
としているのです
だから1,2,3,でもどれでも正であればよいのだけれども
1が最も単純な数だから1とするのです
f(x),g(x)が(a,∞)上の微分可能な関数で
limit{x→∞}f(x)=lim{x→∞}g(x)=0
をみたしているとする
g(x)≠0,g'(x)≠0(x∈(a,∞))であり,
極限
lim{x→∞}f'(x)/g'(x)=A
が存在するとする
a'=max{a,1}とする
0<x<1/a'に対して
a≦a'<1/xだから
F(x)=f(1/x)
G(x)=g(1/x)
と定義できる
limit{x→+0}F(x)
=limit{x→+0}f(1/x)
=limit{x→∞}f(x)
=0
limit{x→+0}G(x)
=limit{x→+0}g(1/x)
=limit{x→∞}g(x)
=0
0<x<1/a'に対して
a≦a'<1/xだから
G(x)=g(1/x)≠0
G'(x)=-g'(1/x)/x^2≠0
limit[x→+0}F'(x)/G'(x)
=limit[x→+0}f'(1/x)/g'(1/x)
=limit[x→∞}f'(x)/g'(x)
=A
だから
定理4.4
(a,b),c,f(x),g(x)を(0,1/a'),0,F(x),G(x)に置き換えて適応できる
から
limit{x→+0}F(x)/G(x)=A が成り立つ
limit{x→+0}f(1/x)/g(1/x)=A
∴
limit{x→∞}f(x)/g(x)=A
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
ゆるやかでぃべーと タイムマシンを破壊すべきか。
これはディベートの論題だと仮定したうえでの回答お願いします。あなたは、その末にタイムマシンを壊してしまうのか、使い道を探すのかどうかを考えてもらいたいです。
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
iに絶対値がつくとどうなるのかを教えてください
数学
-
1+2+3+…=?
数学
-
下の写真 なぜこれは同値性考えずにそのまま2乗できるのでしょうか
数学
-
-
4
数学の問題で 因数分解の問題で、なぜ(x+1)^2が次の{}の中に入った瞬間に2乗ではなくなるのです
数学
-
5
数学の問題に関して質問です。私の解答に問題がないか教えてください。
数学
-
6
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
7
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
8
a, bがa>0, b>0,1/a+2/b=3を満たして変化するとき, (1) abの最小値を求めよ
数学
-
9
複素数の問題で質問があります
数学
-
10
次の説明で太い対角線とは何ですか? 一方、ユークリッド場理論では、n 点関数/相関子は、太い対角線
数学
-
11
画像の説明で式中のmは何を表しているのでしょうか?長さ|a|がm以下ということでしょうけど。
数学
-
12
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
13
数学の問題ですが、わかりません
数学
-
14
tの値が解答と合いません。どこが間違ってるか指摘お願いします
数学
-
15
ここの計算ってどうやってやってるんですか? 一回√の中身を筆算で解いてから素因数分解してるのでしょう
数学
-
16
数学を勉強すると論理的思考力が向上するという疑わしい主張が横行しているのはなぜですか?
数学
-
17
逆三角関数の方程式の問題です。解いたらこうなりましたが、本には、解なしと書かれていました。僕が作った
数学
-
18
微分係数の定義?
数学
-
19
∠B<90°,∠C<90°から、a≠c,a≠-c となる理由が分かりません。 教えてください。
数学
-
20
三角不等式
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
modを使用した平方根の求め方
-
至上最難問の数学がとけた
-
大学の記述入試で外積は使えま...
-
完全数はどうして「完全」と名...
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
ブルバキ 等号を持つ述語論理...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
パップスギュルダンの定理について
-
ファルコンの定理は解かれまし...
-
グッドスタインの定理と超限帰納法
-
ほうべき(方巾)の定理について
-
3^3 + 4^3 + 5^3 = 6^3
-
線形代数、最小多項式、固有多...
-
過去に 「ii) f(z)=1/(z^2-1) r...
-
代数系、体について。
-
ピタゴラスは、「ピタゴラスの...
-
1次合同式について、 「4755x≡72...
-
合同式と倍数
-
オイラーの多面体定理の拡張
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至上最難問の数学がとけた
-
【遊びのピタゴラスイッチはな...
-
大学の記述入試で外積は使えま...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
直角三角形じゃないのに三平方...
-
数学が大好きな国の国旗のデザイン
-
数Aの図形の性質の3の問題につ...
-
パップスギュルダンの定理について
-
複素積分の
-
定理と法則の違い
-
ファルコンの定理は解かれまし...
-
実数の整列化について
-
数A nは自然数とする。n , n+2 ...
-
【線形代数】基底、dimVの求め方
-
コーシーの積分定理 複素積分
-
完全数はどうして「完全」と名...
-
ほうべき(方巾)の定理について
-
「整数係数方程式の有理解の定...
-
長さがマイナスの答えのとき、...
-
傘を買うと雨は止む。
おすすめ情報