convolution f*g の定義を
f,g∈L^1(R^N) に対して
f*g = ∫f(x-y)g(y)dy = ∫f(y)g(x-y)dy
としてありました。

f*g = ∫f(x-y)g(y)dy
において x-y = t とおいて置換積分すると
∫f(x-y)g(y)dy = ∫f(t)g(x-t)(-dt) =-∫f(t)g(x-t)dt
tをyと見れば、
f*g = ∫f(x-y)g(y)dy = -∫f(y)g(x-y)dy
となる気がします。
定義式の符号に - がないのはなぜですか?

A 回答 (2件)

> f*g = ∫f(x-y)g(y)dy = ∫f(y)g(x-y)dy


この積分はどちらもたとえばy=-∞~∞の定積分でなくちゃいけません。

nanjamonjaさんが仰っている通り、
f*g = -∫f(y)g(x-y)dy (積分はy=∞~-∞の定積分)
であり、従って、
f*g = ∫f(y)g(x-y)dy (積分はy=-∞~∞の定積分)
なの。

 また、周期的コンボルーションの場合にも、
f*g = ∫f(x-y)g(y)dy = ∫f(y)g(x-y)dy
の積分がどちらもたとえばy=-π~πの定積分であり、置換をやると
f*g = -∫f(y)g(x-y)dy (積分はy=π~-πの定積分)
  = ∫f(y)g(x-y)dy (積分はy=-π~πの定積分)
ということになります。
    • good
    • 0
この回答へのお礼

yについての定積分だったんですか・・・
本には積分領域がかかれてなかったので不定積分と思っていました。
ありがとうございます。

お礼日時:2001/11/14 10:23

 置換すると、積分区間(-∞,∞)が逆になるので戻すと-が出てきます。

    • good
    • 0
この回答へのお礼

なるほど、確かにそうですね。
よくわかりました。
ありがとうございます。

お礼日時:2001/11/14 10:28

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

(d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。
これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。
そこで、
(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy
が成立するための必要十分条件を教えていただきたいと思っています。
もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

Aベストアンサー

積分と微分の順序交換については
必要十分条件は一般にはありません.
ただし,十分条件は知られています.

リーマン積分の範囲だと
f(x,y)が連続で,f_y(x,y)も連続くらいの条件があれば
d/dy∫f(x,y)dx = ∫f_y(x,y)dx
くらいがいえるはずです.
#積分区間とかは省きます.

その十分条件で一番便利だろうと思われるものは
ルベーク積分の言葉で記述されます.
興味があれば,「ルベーク積分」の本を
追いかけてください.
・ルベークの有界収束性定理
・L^1空間
というようなものが理解できれば,順序交換の定理は理解できます.

Q直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)

問題1
直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)のグラフを書き、その交点を求めよ。

問題2
直線(1)、(2)のなす角をΘ(0°≦Θ≦90°)とするとき、CosΘを求めよ。

問題3
直線(1)と(2)について、それぞれの方向余弦のうち、xの値が正であるものを求めよ。

⇔問題1はとけましたけど、問題2と3がわかりませんでした。

まず問題1は、x=-3-2t=-3+3s y=4+t=-7+4sとしました。sと置き換えたのは=とした時にtの値が同じとは限らないので、
結果
2t+3s=0 t-4s=-11となり、
t=-3、s=2となりました。
交点は(x、y)=(3.1)となりました(答)

問題2は
(1)の方向ベクトルと(2)の方向ベクトルがどのようにしたら求めてよいのか解らないのでとけませんでした。 いままで学んだ内容だと、二点P1(-1,3),P2(2,-1)をとおる媒介変数tを表せという問題をといてきて、
単純にp1p2=(x-x1,y-y1) をやって方向ベクトルをもとめ、x=x1+tl,y=y1+tmの公式にしたがってx=-1+3t,y=3-4tと方向ベクトルを求めていたのですけど、
今回はx-x1にあたる部分が題意を読んで何処なのかわかりませんでした。

題意のx=-3-2t、y=4+t (1)と(2)の式からx1の部分をー3、y1の部分を4とみるのでしょうか?
そうすると、x-x1、y-y1のx1とy1の部分はわかるのですけど、xとyが解らないので、引き算ができず、方向ベクトルが求まりませんでした。

答えをみるとl→=(-2,1)(1) m→=(-3、-4)(2)となってました。どうやったらこのように求まるのでしょうか?

問題3は手が付けられませんでした>_<

だれかこの問題詳しく教えてください、宜しくおねがいします!!>_<

問題1
直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)のグラフを書き、その交点を求めよ。

問題2
直線(1)、(2)のなす角をΘ(0°≦Θ≦90°)とするとき、CosΘを求めよ。

問題3
直線(1)と(2)について、それぞれの方向余弦のうち、xの値が正であるものを求めよ。

⇔問題1はとけましたけど、問題2と3がわかりませんでした。

まず問題1は、x=-3-2t=-3+3s y=4+t=-7+4sとしました。sと置き換えたのは=とした時にtの値が同じとは限...続きを読む

Aベストアンサー

宿題かも知れませんが、きちんと自分でお考えのようなので。

(2)です。

直線(1)は、(x,y)=(-3,4)+t(-2,1)
直線(2)は、(x,y)=(-3,-7)+t(3,4)

と書けます。ということは、

直線(1)は、点(-3,4)を通って、ベクトル(-2,1)に平行な直線
直線(2)は、点(-3,-7)を通って、ベクトル(3,4)に平行な直線

ということなので、2直線のなす角θは、2つのベクトル(-2,1),(3,4)[←これって、それぞれの直線の方向ベクトルです。]のなす角と同じか、又は、「180°-なす角」です。すると、内積を考えて、

cosθ=(-2*3+1*4)/√(4+1)・√(9+16)
=(-2)/(5√5)
=(-2√5)/25

となります。cosがマイナスなので、θは90°よりも大きいことが判ります。今、0≦θ≦90°なので、求めたい値は、

cos(180°-θ)
=-cosθ
=2√5/25

となります。

答の中で、(2)の方向ベクトルを(-3,-4)としているのは、最初から0≦θ≦90°を考慮しているためです。

宿題かも知れませんが、きちんと自分でお考えのようなので。

(2)です。

直線(1)は、(x,y)=(-3,4)+t(-2,1)
直線(2)は、(x,y)=(-3,-7)+t(3,4)

と書けます。ということは、

直線(1)は、点(-3,4)を通って、ベクトル(-2,1)に平行な直線
直線(2)は、点(-3,-7)を通って、ベクトル(3,4)に平行な直線

ということなので、2直線のなす角θは、2つのベクトル(-2,1),(3,4)[←これって、それぞれの直線の方向ベクトルです。]のなす角と同じか、又は、「180°-なす角」です。すると、内積を考えて、

cosθ=...続きを読む

Q∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dx の証明

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

ヒント
fに対する不足和、過剰和を、それぞれ、 s(f,Δ)、S(f,Δ)というふうに書けば、s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) に注意せよ。

同書の略解
分割Δの小区間[a(i-1),a(i)]における f+g,f,g の下限をm(i),n(i),p(i)とすれば m(i)≧n(i)+p(i)、ゆえにs(f,Δ)+ s(g,Δ)=Σn(i)(a(i)-a(i-1)) + Σp(i)(a(i)-a(i-1))≦Σm(i)(a(i)-a(i-1))=s(f+g,Δ)同様にS(f+g,Δ)≦S(f,Δ)+ S(g,Δ) だから、inf(S(f,Δ))=sup(s(f,Δ))、inf(S(g,Δ))=sup(s(g,Δ))なら、inf(S(f+g,Δ))=sup(s(f+g,Δ))=、sup(s(f,Δ))+sup(s(g,Δ))

となっていますが、最後の等式がどうしても出てきません(その前までは理解できました)。行間を埋めていただけるとありがたいです。

s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)

からそれぞれの辺のsup、infを考えるとできるのではないかとも思われるのですが、どうしてもわかりませんでした。

よろしくお願いいたします。

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

...続きを読む

Aベストアンサー

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i-1))+inf(f)(xi-yj)の方が大きくなる。
sup(f)では逆に小さくなる。
(グラフを描いてみればわかると思います)

すなわち、分割を細かくすると、不足和は大きく、過剰和は小さくな
る。

なので、s(f,Δ1)≦s(f,Δ3)、s(g,Δ2)≦s(g,Δ3)
辺々足して、
s(f,Δ1)+s(g,Δ2)≦s(f,Δ3)+s(g,Δ3)
≦s(f+g,Δ3)≦sup(s(f+g,Δ))←これは、あらゆる分割Δに対するsup
という意味で使っているので、Δは分割の変数のような記号と思って
ください。

このように、別個の分割に対する不等式が示せたので、
s(f,Δ1)、s(g,Δ2)それぞれであらゆる分割を考えて、
sup(s(f,Δ))+sup(s(g,Δ))≦sup(s(f+g,Δ))

infのほうも同様です。

本の記述はわかりませんが、同じ分割に対してのみsup,infを考えてい
たのでは、やや曖昧な気がします。

しかし、私の大学時代の関数論が専門の教授は、一松信先生は大先生
だと絶賛していましたが・・・
おそらく、本の中で論理は通っているものと思われますが・・・

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i...続きを読む

Qx*y=log(e^x+e^y)と定義すると、(x*y)+z=(x+z)*(y+z)

x、y∈Rに対して
x*y=log(e^x+e^y)
と定義すると、
(x*y)+z=(x+z)*(y+z)
が成り立ちます。
分配法則の*と+を逆にしたような感じですが、この*から何かしらの代数的な事実が従うのでしょうか?
この*の意味は何なのでしょうか?

x*x=aのとき、x=√aと定めと、
√(a*b)≧(a+b)/2
といった相加相乗平均の関係の類似は成り立つようですが。

Aベストアンサー

e^x=X, e^y=Y, e^z=Z と置いて考えましょう。
e^(x*y)=e^x+e^y → Z=X+Y
e^(x+y)=e^x*e^y → Z=X*Y
つまり、正の数の加算と乗算になります。

>分配法則の*と+を逆にしたような感じですが

まさにその通りです。入れ替えて見てください。

>√(a*b)≧(a+b)/2

通常の相加相乗平均とは逆ですね。

Q公式d(g(x)*f(x))/dx=f(x)*dg(x)/dx+g(x)*df(x)/dxに関する初歩的質問

この公式は私のような人間には実に深遠な印象を与えますが、いまf(x)をx,g(x)をx^2として、y=x^3を考えてみるとdy/dx=x*2x+x^2*xが3x^2となって、初心者でも計算できる公式になります。このように初心者が簡単な例で、難しい公式の正しさを納得できますが、このような納得の仕方と正当な数学学習との接点はどこかにあるのでしょうか。以前にも似た質問をさせていただきましたが、演繹と帰納との関係でもあるのかとも思い、再度質問させていただきました。

Aベストアンサー

こんにちは。

A)公式d(g(x)*f(x))/dx=f(x)*dg(x)/dx+g(x)*df(x)/dx
から
C)(x^3)’= 3x^2
を導くのと、

B)公式(x^n)’= nx^(n-1)
から
C)(x^3)’= 3x^2
を導くのとで、
同じ結果が得られたということですよね。


つまり、
A→C (CはAからの帰納)

B→C (CはBからの帰納)
は、
「それぞれ正しい」ということです。


言い換えれば、
CはAの十分条件であり、Bの十分条件でもあるということです。
あるいは、
AはCの必要条件であり、BもCの必要条件であるということです。


人気Q&Aランキング

おすすめ情報