
convolution f*g の定義を
f,g∈L^1(R^N) に対して
f*g = ∫f(x-y)g(y)dy = ∫f(y)g(x-y)dy
としてありました。
f*g = ∫f(x-y)g(y)dy
において x-y = t とおいて置換積分すると
∫f(x-y)g(y)dy = ∫f(t)g(x-t)(-dt) =-∫f(t)g(x-t)dt
tをyと見れば、
f*g = ∫f(x-y)g(y)dy = -∫f(y)g(x-y)dy
となる気がします。
定義式の符号に - がないのはなぜですか?
No.2ベストアンサー
- 回答日時:
> f*g = ∫f(x-y)g(y)dy = ∫f(y)g(x-y)dy
この積分はどちらもたとえばy=-∞~∞の定積分でなくちゃいけません。
nanjamonjaさんが仰っている通り、
f*g = -∫f(y)g(x-y)dy (積分はy=∞~-∞の定積分)
であり、従って、
f*g = ∫f(y)g(x-y)dy (積分はy=-∞~∞の定積分)
なの。
また、周期的コンボルーションの場合にも、
f*g = ∫f(x-y)g(y)dy = ∫f(y)g(x-y)dy
の積分がどちらもたとえばy=-π~πの定積分であり、置換をやると
f*g = -∫f(y)g(x-y)dy (積分はy=π~-πの定積分)
= ∫f(y)g(x-y)dy (積分はy=-π~πの定積分)
ということになります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報