新生活!引っ越してから困らないように注意すべきことは?>>

重積分の問題なのですが

∬xe^xydxdy D={(x,y) l 1/x≦y≦2, 1≦x≦2}

答えは 1/2(e^4-e^2)-e なのですが、答えに辿り着けません。
途中式の回答をお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

単純に逐次積分で計算すればいいだけじゃないかなぁ.


あなたがどう計算したのかが書いてあれば「ここが違う」って書きようもあるけど....
    • good
    • 7

∬xe^(xy)dxdy


=∫[1→2]x(∫[1/x→2](e^(xy)dy))dx
=∫[1→2]x[(1/x)e^(xy)][1/x→2]dx
=∫[1→2](e^(2x)-e)dx
あとは自分で。
    • good
    • 0

問題とは関係ありませんが累乗している数はかっこで囲んでいただけるとありがたいです


eにxだけがかかっているのかxy両方かかっているのかが分かりにくいので

さて問題ですが、まずyから積分しましょう
問題文からx≠0なのでxでの割り算は可能
よって
∫(1/x→2)xexp(xy)dy=exp(2x)-e

後はこれをxで積分すればおしまい
∫(1→2)exp(2x)-e=1/2(e^4-e^2)-e

yの定義域にxが含まれているのでyから先に積分しましょう。
xで先に積分すると、積分した後にxが残ってしまいます。

xから先に積分することもできますが、定義域の設定が少しややこしくなります。
    • good
    • 0

積分範囲はy=1/x~2,x=1~2になります。

よって、
I=∫[1~2](xdx)∫[(1/x)~2](e^(xy)dy)
=∫[1~2](xdx)・(1/x)(e^(2x)-e)
=∫[1~2](e^(2x)-e)dx
=1/2・(e^4-e^2)-e
    • good
    • 1

このQ&Aに関連する人気のQ&A

積分 e^x^2」に関するQ&A: e^-2xの積分

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q二重積分

∫∫e^{-(x+y)^2} dxdy (積分領域はx≧0,y≧0)
の求め方が分かりません。
色々置き換えなどをやってみたのですが
(例えばx+y=u,x=vとかx+y=u,x-y=vなど)
うまくいきません。
どなたか教えていただけないでしょうか?
よろしくお願いします。

Aベストアンサー

u=x+y,v=xとおくと、積分範囲は、D={(u,v)|u≧0, 0≦v≦u}
ヤコビアンを考えて、dxdy=dudv

∫∫_{D} e^(-u^2) dudv
=∫{u:0→∞}e^(-u^2)*{∫{v:0→u}dv}du
=∫{u:0→∞}ue^(-u^2)du
=[(-1/2)*e^(-u^2)]
=1/2

・・・極座標より、よっぽど簡単だと思いますが。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q2変数関数 f(x,y)の偏微分する方法をご指南ください

2変数関数 f(x,y)を偏微分をといてみたものの
あっているか自信がありません。(特に4番)
わかる方、ご指導よろしくお願いします。

【問題】
次の2変数関数f(x,y)を偏微分せよ。
すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。

(1) x^2+3x+y+2

xに関するyの偏微分: fx(x,y) = 2x+3
yに関するyの偏微分: fy(x,y) = 1

(2) x^2y^3+3x+2y

xに関するyの偏微分: fx(x,y) = 2xy^3+3
yに関するyの偏微分: fy(x,y) = 3x^2+2

(3) (x-y)/(x+y)

xに関するyの偏微分: fx(x,y) = 1/1=1
yに関するyの偏微分: fy(x,y) = -1/1=-1

(4) √(x^2+y^2+1)

f(x,y)=√(x^2+y^2+1)=(x^2+y^2+1)^(1/2)

xに関するyの偏微分: fx(x,y) = 1/(√(x^2+y^2+1)) ?
yに関するyの偏微分: fy(x,y) = 1/(√(y^2+x^2+1)) ?

※(4)は、答えに全く自信がありません。
 できれば、途中の計算プロセスを詳しく教えていただけると助かります。

以上、よろしくお願いします。

2変数関数 f(x,y)を偏微分をといてみたものの
あっているか自信がありません。(特に4番)
わかる方、ご指導よろしくお願いします。

【問題】
次の2変数関数f(x,y)を偏微分せよ。
すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。

(1) x^2+3x+y+2

xに関するyの偏微分: fx(x,y) = 2x+3
yに関するyの偏微分: fy(x,y) = 1

(2) x^2y^3+3x+2y

xに関するyの偏微分: fx(x,y) = 2xy^3+3
yに関するyの偏微分: fy(x,y) = 3x^2+2

(3) (x-y)/(x+y)

xに関するy...続きを読む

Aベストアンサー

(1) x^2+3x+y+2
>fx(x,y) = 2x+3
>fy(x,y) = 1
OK

(2) x^2y^3+3x+2y
>fx(x,y) = 2xy^3+3
OK
>fy(x,y) = 3x^2+2
×
3x^2*y^2+2

(3) (x-y)/(x+y)
>fx(x,y) = 1/1=1
×
1/(x+y)-(x-y)/(x+y)^2=2y/(x+y)^2
>fy(x,y) = -1/1=-1
×
-1/(x+y)-(x-y)/(x+y)^2=-2x/(x+y)^2

(4) √(x^2+y^2+1)
>f(x,y)=√(x^2+y^2+1)=(x^2+y^2+1)^(1/2)
>fx(x,y) = 1/(√(x^2+y^2+1)) ?
×
={(x^2+y^2+1)^(1/2)}'=(1/2)(x^2)'*(x^2+y^2+1)^(-1/2)
=x/√(x^2+y^2+1)
>fy(x,y) = 1/(√(y^2+x^2+1)) ?
×
fx(x,y)と同様に
=y/√(x^2+y^2+1)

(1) x^2+3x+y+2
>fx(x,y) = 2x+3
>fy(x,y) = 1
OK

(2) x^2y^3+3x+2y
>fx(x,y) = 2xy^3+3
OK
>fy(x,y) = 3x^2+2
×
3x^2*y^2+2

(3) (x-y)/(x+y)
>fx(x,y) = 1/1=1
×
1/(x+y)-(x-y)/(x+y)^2=2y/(x+y)^2
>fy(x,y) = -1/1=-1
×
-1/(x+y)-(x-y)/(x+y)^2=-2x/(x+y)^2

(4) √(x^2+y^2+1)
>f(x,y)=√(x^2+y^2+1)=(x^2+y^2+1)^(1/2)
>fx(x,y) = 1/(√(x^2+y^2+1)) ?
×
={(x^2+y^2+1)^(1/2)}'=(1/2)(x^2)'*(x^2+y^2+1)^(-1/2)
=x/√(x^2+y^2+1)
>fy(x,y) = 1/(√(y^2+x^2+1)) ?
×
fx(x,y)と同様に...続きを読む


このQ&Aを見た人がよく見るQ&A