このような問題なのですが、教えて下さい。

問1 2次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。   
 
    2L│_
      │ │ 
      │ │
      │_│__x
        L                                 
   【H:エイチバーの意】   H^2π^2         ny^2        
   エネルギー固有値は E=――――――(nx^2+――――)  
                    2mL^2          4       
    (nx=1,2,3・・・)、(ny=1,2,3、・・・)    

   (1)基底状態のエネルギー固有地をH、π、m、Lで表せ。
   (2)第4励起状態(5番目)のエネルギー固有値をH、π、m、Lで表し、
     それを与えるnxとnyの組み合わせを全て求めよ。

問2 1次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。
   エネルギー固有関数はφ(x)=√(2/L)・sin(nπx/L)である。
   L=1.0×10^-10m として、第1励起状態にある粒子を、
   x=0とx=0.25×10^-10mの間に観測する確率を計算せよ。

A 回答 (2件)

要するに,{nx^2 + ny^2/4} を順に並べるだけでしょう?


nx^2 = 1, 4, 9, ...
ny^2/4 = 1/4, 1, 9/4, 4, ...
だから,
一番低い(基底状態)のは,1, 1/4 の組み合わせで {nx^2 + ny^2/4} = 5/4
第1励起状態は,1, 1 で {nx^2 + ny^2/4} = 2
第2励起状態は,1, 9/4 で,...
以下同様です.

問1の(1),{nx^2 + ny^2/4} のところはOKですが,
前の係数は大丈夫?
    • good
    • 0

なんだかレポート問題みたいですし,


量子力学の典型的な演習問題なので,ヒントだけ.

《問1》
要するに, エネルギーは {nx^2 + ny^2/4}
に比例しているのですよね.
じゃあ, {nx^2 + ny^2/4} が低い順に並べてみたら?

《問2》
粒子の存在確率密度は |ψ|^2 でしたね.

この回答への補足

[量子力学の典型的な演習問題]と言われたので
きっと的確なヒントなのでしょう。
はい、確かにレポート問題なのですが、
なにぶん予習代わりに出題されているものですから
教科書を見て方針は判っても計算が出来ないのです。
積分計算苦手なもので・・・。
問1の(1)はこれでしょうか?
E=H・π^2/mL ・(5/4)
(2)は良くわからないのですが。

補足日時:2001/11/24 22:00
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2次元井戸型ポテンシャルの問題がわかりません

「ポテンシャルV(x、y)は 

{0<=x、y<=L}のとき0
それ以外の領域は∞

のときのエネルギー固有値と波動関数を求めよ」

という問題なんですがよくわかりません。
周期的境界条件ってこの場合ありますか?
流れだけでもいいですので教えてください。

Aベストアンサー

結論から言うと、X(L)=0 、Y(0)=0です。(この境界条件を課さないと解けません)
sotobayasiさんがつまづかれたのは式解釈の単純な誤りによります。

ポテンシャルを与えている式ですが、題意の式は
 0≦x≦L かつ 0≦y≦L
 の領域で0、
 それ以外の領域で無限大
との意味に解釈すべきです。(でないと、2次元量子井戸にならないですよね)
もし出題者がポテンシャルをsotobayasiさんの解釈のように
 0≦xで0 また y≦Lで0
と与えたかったのならばLなんて値を持ち出さずに、ポテンシャルを
 0≦xで0 また y≦0で0
と与えたはずです。(∵単なる座標の平行移動なので、本質的に同じ問題)

そもそもポテンシャル0の部分が半無限に広がっているのであれば波動関数はどこまでも広がってしまい、規格化条件∫|φ|^2 dr=1を適用できません。
またエネルギー準位も好きなものを取れますから固有値はなんでもよくなってしまいます。

以下の図はポテンシャルの井戸を上から覗いた図です。(■が無限にポテンシャルの高いところ、□がポテンシャル0のところだと思って下さい)
【正しい解釈】
y
↑→x
■■■■■■
■■■■■■
■■□□■■L
■■□□■■0
■■■■■■
■■■■■■
  0 L

【誤った解釈】
y
↑→x
■■■■■■
■■■■■■
■■□□□□L
■■□□□□
■■□□□□→無限にポテンシャル0の部分が続く
■■□□□□
  0  ↓こちらも無限にポテンシャル0の部分が続く

結論から言うと、X(L)=0 、Y(0)=0です。(この境界条件を課さないと解けません)
sotobayasiさんがつまづかれたのは式解釈の単純な誤りによります。

ポテンシャルを与えている式ですが、題意の式は
 0≦x≦L かつ 0≦y≦L
 の領域で0、
 それ以外の領域で無限大
との意味に解釈すべきです。(でないと、2次元量子井戸にならないですよね)
もし出題者がポテンシャルをsotobayasiさんの解釈のように
 0≦xで0 また y≦Lで0
と与えたかったのならばLなんて値を持ち出さずに、ポテンシャルを
 0≦xで0 ま...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む


人気Q&Aランキング