y=x^1/3 の(-8,-2)から(8,2)までの弧の長さを求める問題において、xに関して積分できないのはなぜですか?
この問題はx=y^3に変形して、yに関して積分して回答してあります。ちなみに、
∫√(1+f'^2)dxの公式を使って解く問題です。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

まず,式が違っています.


y=x^(1/3) なら dy/dx = (1/3)x^(-2/3) ですから,
曲線長の公式に代入すると
(1)  ∫√{1+(1/9)x^(-4/3)}dx
です.x のべきに注意.
形式的にはこうですが,x<0 はこのまままではちょっとまずい(後述).

数値積分の基本は,もともとの積分の定義の
「細かく分けて,関数値×幅,の和を取る」
です.
実際のルーチン(台形公式,シンプソン,,ガウス,...)はもっと精度が出るように
工夫されていますが,基本は上のようなことです.

> ∫√(1+(1/9)x^(4/3))dx, -8,8(左の-8,8は積分区間)として、
> 関数電卓に入力しましたが、エラーがでました
負の数の 4/3 乗は複素数になってしまいます.
そこでエラーなのでしょう.
-4/3 乗と直しておいても同じことです.

> ∫√(1+(1/9)x^(4/3)), 0,8
なら問題ありませんが,上で書いたように式自体が違っています.
この積分は 10.4972 で,2倍すると補足の答(20.99...)になります.

(1)の修正版なら
(2)  ∫√(1+(1/9)x^(-4/3)), 0,8
ですが,これは積分ルーチンによってはエラーが出ます.
x^(-4/3) に x=0 を代入すると無限大になってしまうからです.
関数値は発散しても,積分値はちゃんと存在します.
うまく処理するルーチンもありまして,それでやれば 8.63033 で,
2倍すると補足で y を使った結果と一致します.

> グラフの形に問題があると思うのですが
x^(-4/3) に x=0 を代入すると無限大というのは,
原点での傾きが発散していることを意味しています.
これが今の困難のグラフ的な意味です.
y を独立変数と見ると,傾きはゼロですから問題はありません.

察するに,以上のような注意を体得してもらいたいための例題なのでしょう.

No.1 回答へのコメント:
x で表現しても y で表現しても,この積分は初等関数では表されません.
つまり,ふつうに言う「積分できた」にはなりません.

No.2 回答へのコメント:
y で表現しても √(1 + a y^4) の形の積分ですから,
三角関数を用いても積分はできません.
y^4 でなくて y^2 の形なら積分できますが.
    • good
    • 0

x=y^3 としても,


∫√(1+9y^4) dy
を計算しなければならず,これは楕円積分です.
いわゆる「積分できた」という形にはなりませんが.
    • good
    • 0

x=y^3の形であれば、三角関数を使った置換積分ができるからということでしょうか。

xに関して積分できないというのは、結局、原始関数が求められないということになるかと思います。
要は、∫√(1+f'^2)dxのような形の積分はほとんどの関数で不定積分が不可能な訳で、たまたまできるもの、変換すればなんとかなるものが問題として出題されるということでしょう。
    • good
    • 0

xに関しても積分できます。


自分で計算してから質問しましょう。

この回答への補足

質問で書き忘れた点が多くて申し訳ありません。補足します。
まず、この問題は関数電卓を用いて解く問題です。問題は「y=x^1/3の(-8,-2)から(8,2)までの弧の長さを次の2通りの方法で解け」、というものです。(1)xに関して積分して解け(2)yに関して。
私はまず、(1)を∫√(1+(1/9)x^(4/3))dx,-8,8(左の-8,8は積分区間)として、関数電卓に入力しましたが、エラーがでました。
だから、次に 2*∫√(1+(1/9)x^(4/3))0,8(グラフは原点対称で弧の長さを求める計算としては積分区間を半分にしてそれを単純に2倍すればよいと考えました。) として計算すると20,99446と答えが返ってきました。
(2)に関しては、∫√(1+9y^4)dy,-2,2として関数電卓で計算してやると、17,2606584という答えが返ってきました。そして、これがこの問題の解答です。
回答によると(1)の積分計算は機能しないと書かれてあります。グラフの形に問題があると思うのですが、はっきりとなぜ機能しないのかその理由がつかめません。どなたかその理由を教えてください。

補足日時:2002/02/06 03:52
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Q≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3

≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3=8…(2)を満たす。
(1)x^2+y^2+z^2をzを用いて表せ。

(x+y+z)(x^2+y^2+z^2-xy-yz-zx)-3xyz=x^3^+y^3+z^3
の関係式を使ってみようかな。。。
って思ったんですが…できません^^;

どなたかよろしくお願いします。

Aベストアンサー

x^2+y^2+z^2をzで表すのだからx^2+y^2の部分が問題です。
x^2+y^2はx+yとxyで表せますね。
だから目標はxyをzで表すことです。

(1)が使えるように(2)を変形してみる。
(x+y)^3-3xy(x+y)+z^3=8
(1)を代入してみる。
2^3-3xy*2+z^3=8
xy=z^3/6
となった。

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Q∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x}

∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x}
という重積分について質問です。∫∫【D】2x|y|dxdyと∫∫【D】2xydxdyってどう違いますか?

この場合では、領域がx軸に関して対称だから、前者の場合も後者の場合もたまたま答えが同じになるけれど、理屈としては、y座標が負になっている部分をx軸に関して折り曲げた結果として、図形がx軸に関して対称だったために、y座標が正の部分を2倍することになったと考えればよいのでしょうか?
言葉が下手で、伝わりにくい文章ですみません。

Aベストアンサー

>この場合では、領域がx軸に関して対称だから、前者の場合も後者の場合もたまたま答えが同じになるけれど

本当にそうなります?
2xyはyについて奇関数、2x|y|はyについて偶関数です。
前者をx軸について対称な領域で積分すると"0"に、後者を同じ領域で積分するとx軸よりも上側の領域での積分の2倍になります。


人気Q&Aランキング

おすすめ情報