
No.1ベストアンサー
- 回答日時:
量子力学では角運動量が量子化されていて,その単位が h/2π になっています.
プランク定数はよく[エネルギー・時間]の次元を持っていると言われますが,
ちょうどこれは角運動量の次元[長さ・運動量]になっています.
普通の運動(たとえば,円運動のようなもの)では角運動量は h/2π の整数倍に限られています.
ところが,電子などには空間運動の自由度の他にそれ自身がもつ内部自由度があって,
それに角運動量が付随しています.この自由度をスピンと呼んでいます.
スピンに付随する角運動量は普通の運動と違って h/2π 単位の量子化になっています.
したがって,スピン 1/2 は (1/2)(h/2π)の角運動量を持っているということです.
なお,スピンというといかにも電子が自転しているような感じを受けますが,
現在ではそういうイメージは正しくないとされています
(はじめの頃は本当に自転と思われていたようですが).
パリティとは「偶奇性」ということです.
いろいろな意味に使われますが,例を挙げましょう.
電子2個を考えましょう.
片方の電子の波動関数をψ,もう片方をφとします.
一番目の電子が状態ψにいることをψ(1)などと表すことにします.
ψ(1)φ(2)+φ(1)ψ(2) を作ってみると,1←→2の交換をしても全体の式は不変です.
これを「偶である」(even parity)といいます.
一方,ψ(1)φ(2)-φ(1)ψ(2) ですと,
1←→2の交換をすると全体の符号が変わってしまいます.
これを「奇である」(odd parity)といいます.
同種粒子が2個以上ある場合の波動関数についてはパウリ原理という制限があり,
電子では任意の2個を交換したときにパリティが奇のもののみ許される,
ということになっています.
したがって,電子2個の波動関数はψ(1)φ(2)+φ(1)ψ(2)タイプは許されず,
ψ(1)φ(2)-φ(1)ψ(2) タイプに限られる,ということになります.
親切な解答ありがとうございました。しかも、二度にわったって教えていただき恐縮です。改めてスピンとパリティがなんなのか解かったような気がします。くだらない、質問に時間をさいてくだっさってありがとうございました。
また、質問でご迷惑掛けると思いますが、その時もまた宜しくお願いします。 ゆにぃ より
No.3
- 回答日時:
前の私(siegmund)の解答,一箇所ミスプリがありました.
> スピンに付随する角運動量は普通の運動と違って h/2π 単位の量子化になっています.
は (1/2)(h/2π) と訂正してください.
ついでに,atsuota さんの解答にちょっと補足.
> ところが、スピンが整数の粒子(中間子など)はボソンと呼ばれ、同じ位置に2個以上の同一粒子が存在できます。
> この性質から同じ位置に沢山の同一粒子が閉じ込められるのがボース凝縮と呼ばれ、超伝導に関係しています。
同じ位置に沢山の同一粒子が閉じこめられるというと,空間的に粒子が
局在してしまっているような印象を受けますが,それとは事情が違います.
気体を箱に閉じこめておくと,気体分子は箱の中に万遍なく存在しています.
これをうんと冷やして固体にすると,固体部分以外のところにはほとんどその物質の分子は
存在しません.これが実空間的な凝縮です.
電子がボーズ凝縮を起こした超伝導はこのような実空間凝縮とは違います.
超伝導状態になった金属の一部分に超伝導電子がかたまっているわけではありません.
凝縮が起きているのは実空間ではなくて,それとフーリエ変換で結びついている運動量空間です.
運動量がゼロの状態に多数の電子が落ち込んだのが超伝導状態です.
蛇足ですが,電子1個はフェルミ粒子ですが2個ペアにするとボーズ粒子になります.
超伝導では電子2個がペアになっている(Cooper pair)ことがわかっています.
No.2
- 回答日時:
下でsiegmundさんが書かれているとおりなので、補足。
空間の角運動量以外に内部自由度がある、という意味は
全角運動量をM^3(ベクトル)
空間の角運動量(軌道角運動量)をL^3
スピン角運動量をS^3
とするとき、
M^3 = L^3 + S^3
のことです。
例えば電子の基底状態(最低エネルギー状態)のときは軌道角運動量が0なので、
M^3 = S^3
となり、電子の場合はS=1/2、つまり電子は基底状態でも角運動量を持っているわけです。(だから「自転」というイメージが昔は考えられたのですね。)
ちなみにある方向zに対して、独立な2つの状態があり、Sz=1/2を上向きスピン、Sz=-1/2を下向きスピンと呼びます。
パリティについてもsiegmundさんの書かれたとおりですが、これは粒子交換のパリティですね。他にも位置交換のパリティがあります。
関数 y=f(x) があるとき、
f(x) = f(-x) ならば遇パリティ
f(x) = - f(-x) ならば奇パリティ
と呼びます。こちらはf(x)が遇関数か奇関数かというのと全く同じ意味です。
ついでにパウリの排他原理についてもちょこっとだけ。
電子や陽子などスピンが半整数のものはフェルミオンと呼ばれ、同じ位置には2個以上の同一粒子が存在できません。これがパウリの排他原理です。
ところが、スピンが整数の粒子(中間子など)はボソンと呼ばれ、同じ位置に2個以上の同一粒子が存在できます。この性質から同じ位置に沢山の同一粒子が閉じ込められるのがボース凝縮と呼ばれ、超伝導に関係しています。
いやぁ、知れば知るほど奥深く、疑問もつきませんね。
親切な解答ありがとうございました。しかも、さらに詳しく教えていただき恐縮です。改めてスピンとパリティがなんなのか解かったような気がします。くだらない、質問に時間をさいてくだっさってありがとうございました。
また、質問でご迷惑掛けると思いますが、その時もまた宜しくお願いします。 ゆにぃ より
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
新生活!引っ越してから困らないように注意すべきことは?
新しい職場や学校で元気いっぱいのスタートを切るためにも快適な生活環境を整えておきたい! >>
-
波長(nm)をエネルギー(ev)に変換する式は?
物理学
-
パリティ選択則
物理学
-
エクセル近似曲線(範囲指定)
Excel(エクセル)
-
4
核スピン量子数の推定方法について教えてください
化学
-
5
d-d遷移について
化学
-
6
スペクトル項(Cの基底状態のもの)
物理学
-
7
3価Euにおける電気双極子遷移と磁気双極子遷移の遷移確率について
物理学
-
8
酸素分子O2の項記号について
化学
-
9
2次元自由電子の状態密度関数
物理学
-
10
SU(3)、SU(n)の物理的な意味
物理学
-
11
スピン量子数
化学
-
12
時間反転した波動関数
物理学
-
13
縮退をわかりやすくお願いします
物理学
-
14
e^(x^2)の積分に関して
数学
-
15
水溶液中のMn^2+による着色が、Fe^2+やTi^3+による着色に比べ薄いのは何故?
化学
-
16
放射科学の壊変図について!
化学
-
17
キャリアの移動度と温度依存性について
物理学
-
18
エクセルの散布図グラフで、横比1:1の図形を作画したい
その他(Microsoft Office)
関連するQ&A
- 1 物理の電磁気の問題で、「無限に長い導線」という言葉が出てきたのですが、それは導線の長さを無視するとい
- 2 物理の勉強のモチベをあげる為に何か魅力ややる気の出る言葉など言ってもらえないでしょうか。。
- 3 物理を勉強する前に物理基礎やっておいたほうがいいでしょうか…? 自分は高1のとき全然勉強しませんでし
- 4 物理の「力(force)」とは何ですか?言葉としての「力」ではなく物理用語としての「力」の考えで何か
- 5 物理学について教えていただきたいです。 高校2年生女子です。 理系で物理を勉強していて、最近物理が好
- 6 クォークのスピンと陽子のスピン
- 7 物理入門問題精講 ↓ 物理基礎問題精講 ↓ 物理標準問題精講 ↓ 物理重要問題集 ↓ 名門の森 物理
- 8 上向きスピンとはどのような巻き方のスピンでしょうか
- 9 高校で物理未履修です。 物理基礎すらやっていません。 大学の物理と高校の物理は違いますか? 大学の物
- 10 物理基礎の力の分野で49sinθ=49×3/5と出てきました。物体の重さは49Νです。何故、両辺に4
おすすめ情報
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
反物質とは?
-
5
フェルミエネルギー
-
6
粉体の混ぜ方
-
7
量子論が意味不明すぎですw
-
8
物理学を生かす職業は?
-
9
シュレーディンガーの猫の観測...
-
10
ド・ブロイ波の速度について質...
-
11
宇宙の階層構造と時間の遅れは...
-
12
大学生です。趣味がなく、暇で...
-
13
他人から不快なことをされたら...
-
14
力学的エネルギーの保存でレー...
-
15
人間のジャンプ時の衝撃値は?
-
16
511keVを観測したとありますが...
-
17
放電で対消滅反応は簡単に起き...
-
18
金属、半導体の抵抗の温度変化...
-
19
縮退をわかりやすくお願いします
-
20
ホッピング伝導とはどんなもの...
おすすめ情報