△ABCにおいて、AB=x、BC=2x、CA=9とする
(1)△ABCができるようなxの範囲を求めよ
(2)△ABCが直角三角形になるときのxの値を求めよ
(3)∠Cが最大になるときのxの値を求めよ
この問題を解いています
(1)は三角形の成立条件より3<x<9となって
(2)はBCが最大辺になるときx=3√3、ACが最大辺になるときx=9√5/5となったのですが、
(3)の条件がうまく言い換えられません。「∠Cが最大のときABが最大辺になる」ということを利用できるでしょうか?(2)のように三平方の定理が利用するわけにはいかないので困ってます。
何らかのアドバイスやヒント等いただければ幸いです。よろしくお願いします
No.1ベストアンサー
- 回答日時:
余弦定理より
cosC=(4x^2+81-x^2)/36x=(1/12){x+(27/x)}
cosCが最小の時Cが最大となるので、{x+(27/x)}が最小の時Cは最大
相加平均、相乗平均の関係から
{x+(27/x)}≧2√27
等号は x=27/x すなわち x=3√3 のとき
cosCの最小値は (1/12)*2√27=(√27)/6=(√3)/2
No.3
- 回答日時:
図形で考えると(数IIレベル)
点Cを原点、点Aを(9,0)にとると、点Bは(2AB=BCより)
点D(12,0)を中心とする半径6の円周上にあります。
点Bを円周上で動かして、∠ACBが最大になる時のBの位置を考えると、辺BCが円の接線になる時だとわかります。
このとき、△CDBは∠B直角でCD=12、BD=6より、∠C=30度でBC=6√3になり、x=AB=(1/2)BC=3√3
(ちなみに、点Bは(9,±3√3)になる。)
この解き方は角Cが30度45度60度以外の時はややメンドウだが、たいていはそのどれかで問題が出ます(問題を作ります)。
「∠Cが最大のときABが最大辺になる」は解くときに使ってもよい知識ですが、この問題では使いません(できません)。
数Iレベルでは、No1、No2さんのやり方が順当だと思います。
3人の方々回答いただきありがとうございました。
cosCが最小のときに∠Cが最大というのがみそだったのですね!本当にありがとうございました
No.2
- 回答日時:
・・・一応、自分なりに解いてみたのですが、何かとてつもなくややこしくなった気がします・・・。
--------------------------------------------------------------------------------------------------
私は、余弦定理で解いてみました。ABについて余弦定理を利用して、『x^2 = 4x^2 + 81 -36xCOS∠C』として、COS∠Cについて整理します。後は、その整理した式をxで微分して最大値を得ると、答えが出てきました。ちなみに、その値をxに代入すると、COS∠Cの値も得られました。
・・・・と、このような具合です。解答の参考にして下さいませ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
極大値・極小値 を英語で
-
aを正の定数とし、f(x)=x²+2(a-...
-
マルチディスプレイ【2台】に...
-
範囲の始まりと終わりの値の名称
-
なぜ、最小値がないのかが分か...
-
Excelグラフ作成方法を教えてく...
-
3σと最大値,最小値
-
添削お願いします。 [問題] 自...
-
三角形 角度が最大になるときの辺
-
80Ck (Cはコンビネーション)が...
-
至急!1対1対応の演習 一文...
-
青チャートの例題35です
-
立方体の個数について
-
なぜ減点なのか。
-
曲面の曲率
-
(2)aは正の定数とする。0≦x≦aに...
-
(数学II)加法定理の応用
-
三角関数の問題教えてください...
-
正と負の数値が混在する中で、...
-
x+y=u、xy=vとする。x^2+xy+y^2...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
極大値・極小値 を英語で
-
なぜ、最小値がないのかが分か...
-
マルチディスプレイ【2台】に...
-
①とても初歩的なことなのですが...
-
aを正の定数とし、f(x)=x²+2(a-...
-
数値データの規格化
-
3σと最大値,最小値
-
(2)aは正の定数とする。0≦x≦aに...
-
正と負の数値が混在する中で、...
-
範囲の始まりと終わりの値の名称
-
至急お願いします
-
確率の問題
-
数学の表記の表し方で最大値と...
-
数学の質問です。 y=3sinθ-1 (0...
-
数II:三角関数の合成です
-
y=-|x-2|+3のグラフで 問題 ...
-
基本情報処理 平成27年春期 ...
-
最大値=∞ というように無限を解...
-
数学 二次関数についてです。 ...
-
Excelグラフ作成方法を教えてく...
おすすめ情報