球のモーメントを求める時、球の中の薄い円板を考え、それを積分していくと思います。
この時
2∫r^2dm
にr^2をそのままにしてdmを薄い円板質量を入れて求めると教科書の答えが違ってくるのは何故でしょう?
教科書は
円板の慣性モーメントdI=r^2/2×dm
を考え、2∫(円板の慣性モーメント)
と入れて求めています。
慣性モーメントの公式は ∫r^2dm
なのではじめの方法も間違っていない気がするのですが、2番目の方が正しいのですよね?
はじめの方法は何が行けないのでしょうか?
もし分かる方がいらっしゃったら教えてください。
No.2ベストアンサー
- 回答日時:
この場合のrとはなんでしょう?
z軸からの距離でなければなりません。
z軸の周りの慣性モーメントを求めたい(球の対称性によりどこを軸にとっても同じ)わけですから。
だから、I=ΣΔmr^2=∫r^2ρdV
=∫∫∫r^2ρdxdydz=∫∫∫ρ(x^2+y^2)dxdydz=Iz
として計算すべきものです。
もし、I=2∫r^2dmとして計算するとどうなるでしょう?これは、2倍しているのは左右で二つあるからだと思います。∫r^2dmのdmを、例えばx軸上の距離rの位置にある、x軸に垂直な薄い円板の質量としてしまうと、その薄い円板上の質点の
部分部分によって、z軸からの距離は変わってきますよね。それなのに、円板を構成する全ての質点がz軸から距離rにある、としてしまっているのがr^2dmという式にほかなりません。つまり、z軸から距離rにあるのは
円板を構成する質点のなかではx軸上の一点だけで、
そのほかの円板上の質点はz軸からの距離がrより大きいのです。
だから、r^2dmのdmに微小円板の質量を入れてはいけないのです。
dI=r^2/2×dmを使う場合は、z軸の周りの円板の微小慣性モーメントは既に計算されているから、それをdmについて加え合わせる分には問題ありません。
参考までに,Iz=∫ρ(x^2+y^2)dV
Iy=∫ρ(x^2+z^2)dV,Ix=∫ρ(y^2+z^2)dV
Ix=Iy=Izより、
Iz=(Ix+Iy+Iz)/3=∫2/3ρr^2dV(このrは球の半径方向)
=∫(2/3)ρr^2(4πr^2dr)=2/5Ma^2 (a=球の半径)
No.1
- 回答日時:
積分範囲が異なってしまいます。
最初の式を正しく書くと
2∫(V) r^2/2・dm (←∫の右下に「V」ですが便宜的にこう書きます)
となり、dmは微小体積dxdydzあたりの質量です。これを全体積にわたって積分すれば正しい答えが出ます。
それを円盤質量で計算すれば
2∫(h)r^2dm (←h:高さ)
と、高さにわたる積分を計算することになってしまいます。この式のdmは微小高さdzあたりの質量です。
ここで、元の式にあったrとは、原点から微小体積までの距離です。z方向だけでなくx,y方向の距離も考えなければいけません。
それに対し円盤質量の高さ積分ではrをz方向のみ考えていることになります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 図のように、内半径aの中空の円筒が、その中心軸が水平になるように固定されており、その中で、 質量 M 7 2023/02/15 09:23
- 工学 等分布荷重の曲げモーメント計算について 1 2022/08/16 14:36
- 物理学 電磁気学 磁気物理学 磁気モーメント 2 2022/10/18 22:19
- 化学 化学 物理 回転定数Bより、HCl分子の慣性モーメントを計算せよ。HとClの質量は文献の値を用いよ。 4 2023/06/12 18:17
- 化学 化学 物理 回転定数Bより、HCl分子の慣性モーメントを計算せよ。HとClの質量は文献の値を用いよ。 3 2023/06/12 16:33
- 物理学 半径rの滑車の両端に質量mのおもりをぶら下げて、片方のおもりを速度vで降下させたとします。 このとき 6 2023/05/09 19:10
- 工学 長文になって申し訳ございません。 材料力学についての質問です。 写真のように部材ごとに分けて部材に働 1 2022/11/12 21:35
- 物理学 力学的エネルギー保存則について 4 2023/06/06 14:02
- 物理学 半径aの円形コイルが、水平方向を向いた一様な磁束密度Bの中につるされている、コイルの面とBが平行にな 3 2023/05/02 01:23
- 物理学 摩擦クラッチを含む回転軸系で1次側と2次側の慣性モーメントはそれぞれ 3kgm^2,5kgm^2 で 4 2022/08/09 23:30
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
質量m 半径aの一様な円環の慣性...
-
スパン方向とはどの方向ですか?
-
径方向?放射方向?
-
ラディアル方向・タンジェンシ...
-
連成振動(円周上につながれた...
-
2つのバネに挟まれた物体の振動...
-
電磁気学、TEMモードでマクスウ...
-
極座標を用いて数値計算する問...
-
高校物理基礎で、変位と位置の...
-
d軸インダクタンス・q軸インダ...
-
2物体の運動を重心系で考えると...
-
sinaiのビリヤードとは?
-
力のモーメントにおける力の伝...
-
英語で位置は何というんでしょう?
-
表式ってなんですか?数学用語?
-
すべり面とすべり方向
-
大学物理の問題が助けてください><
-
角運動量についてです 慣性モー...
-
物理なんですけど、変位=x座標...
-
ニュートン力学は、何が近似だ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
質量m 半径aの一様な円環の慣性...
-
スパン方向とはどの方向ですか?
-
2物体の運動を重心系で考えると...
-
径方向?放射方向?
-
表式ってなんですか?数学用語?
-
高校物理基礎で、変位と位置の...
-
2物体の慣性モーメント
-
さらに・・4次元距離って?
-
段差を乗り越えるのに必要なト...
-
2つのバネに挟まれた物体の振動...
-
物理なんですけど、変位=x座標...
-
「陽に含まない」について
-
特殊相対性理論におけるトンネ...
-
英語で位置は何というんでしょう?
-
変位座標から角速度・角度の求め方
-
ラディアル方向・タンジェンシ...
-
地上から鉛直上方に投げられた...
-
半円周上を移動した時の力がす...
-
鉛直面内での、円運動を考える...
-
流体力学 円筒座標系
おすすめ情報