痔になりやすい生活習慣とは?

バネの伸びx、張力X、とした時、X=kxが成り立つ。kは温度Tに依存する。
この時のバネのヘルムホルツエネルギーF、内部エネルギーU、エントロピーS、をxの関数として求める時、X=(∂F/∂x)T (Tは括弧の右下)までは求まったのですが、それ以降が進みません。。。多分、順序的にはこれからF→S→Uと求めていくのでしょうが、どう進めばいいかわかりません。どなたか教えて頂けないでしょうか?

A 回答 (2件)

訂正


変形が断熱変化(可逆変化の場合)
kx=(∂U/∂x)Sから
U=U0+1/2kx^2
ではxの変化にともなって温度がかわり
kの値も変化するので
簡単に積分できませんでした。
(断熱線にそってk 一定として
いるので間違え)
    • good
    • 1

dx伸ばすに必要な仕事


dW=Xdx(=kxdx )
TdS=dU-dW
dU=dW+TdS=TdS+Xdx
X=(∂U/∂x)S [→kx=(∂U/∂x)S]
変形が断熱変化(可逆変化の場合)
kx=(∂U/∂x)Sから
U=U0+1/2kx^2
ヘルムホルツの自由エネルギーは
F=U-TS
dF=dU-TdS-SdT=-SdT+dW
=-SdT+Xdx[=-SdT+kxdx]
X=(∂F/∂x)T[→ kx=(∂F/∂x)T]
S=-(∂F/∂T)x
Maxwellの関係式は
(∂S/∂x)T=-(∂X/∂T)x
[→(∂S/∂x)T=-x(∂k/∂T)x]
kの温度依存性を
β=-(∂k/∂T)x
とすれば、
(∂S/∂x)T=βx
等温変化の場合、
F=F0+1/2kx^2
S=S0+1/2βx^2

ちなみに
Gibbsの自由エネルギーは
G=F-Xx
dG=-SdT-xdX
x=-(∂G/∂X)T
S=-(∂G/∂T)x
Maxwellの関係式は
(∂S/∂X)T=(∂x/∂T)X
線膨張率
γ=1/x・(∂x/∂T)X
とすれば、
等温変化では、
dX=kdx
(∂S/∂x)T=-βx
(∂S/∂X)T=γx
1/k・(∂S/∂x)T=γx
(∂S/∂x)T= kγx
S=S0+1/2・kγx^2
β=kγの関係がある。
    • good
    • 0
この回答へのお礼

なるほどですね!!
全微分を積分するんですか…思いつきませんでした!!
とっても詳しい説明ありがとうございました!!
ギブスの自由エネルギーの導き方まで、教えて頂きありがとうございます!!

お礼日時:2007/11/10 04:55

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q熱力学の問題(大学1年レベル)

熱力学の勉強をしていてわからない問題があります。
友達と相談して解いても合っている自信がありません。
ぜひ教えてください。ウガンダハイフンなどは理解しています。

問 温度に依存して変化するばね定数kを有するばねがあり、これを準静的に伸ばす。ばねの伸びをxとすると、ヘルムホルツの自由エネルギーの変化は以下のように与えられる。

dF=-SdT+kxdx

(1)温度Tを固定した時のFとxの関係に着目し、Fをばねていすうk、伸びxを用いて表せ
(2)エントロピーSを求めよ
(3)内部エネルギーUを求めよ

Aベストアンサー

(1)
全微分の知識を用いれば
(∂F/∂x)_T=kx
なので両辺積分して
F=1/2 kx^2+C(T)
となります.ここでC(T)は積分定数です.
表記を変えると
F(T,x)=1/2 kx^2+F(T,0)


(2)
エントロピーも全微分の知識より
S=-(∂F/∂T)_x
 =-1/2 x^2 dk/dT -dC/dT
となります.
表記を変えると
S(T.x)=S(T,0)-1/2 dk/dT x^2
です.


(3)
U=F+TSより
U(T,x)=U(T,0)+1/2 (k-dk/dT)x^2

となります.

(微分)_x
という記号は
「xを固定して微分せよ」
という意味です.

ばね定数の温度依存性については統計力学を勉強すると定量的にわかることになります.

Qエントロピー変化の計算

完全気体の圧力がPiからPfまで等温変化するときのエントロピー変化を計算せよ、という問題があります。しかしどのように計算すれば良いのか分かりません。この答えはΔS=nR*ln(Pi/Pf)だそうです。

以下は自分の考えです。
dS=dq/T と表されるのでΔS=∫(dq/T)=q/T (積分範囲はi→f)となり、熱を求めようと思いました。
等温変化なのでΔU(内部エネルギー変化)=q+w=0 (q:熱 w:仕事)が成り立ち、q=-wとなり、仕事を求めばいいと思うのですがどのようにwを求めていいのか分かりません。圧力一定で、体積が変化する場合なら求められるのですが・・・。

どなたかお分かりになる方、教えていただければ幸いです。

Aベストアンサー

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数だからです)
そして今dT=0より、結局pdV=-Vdp 状態方程式でVをpであらわし
よって、∫dS=∫pdV/T=∫-Vdp/T=∫-(nR/p)dp
=-nR[logp](p=pi~pf)
=nRlog(pi/pf)

余談ですけど、なぜ可逆過程なのにエントロピー変化があるのかというと、ひとつは、断熱系と混同しがちだからです。dS≧dQ/Tというのが、一番基本的なものなのです。断熱系dQ=0の場合のみdS≧0となりエントロピー増大則になります。また
等温変化の可逆過程では、dS=dQ/Tと、=になりましたけど、
これを高熱源や低熱源を含めた全体の系に適用すると、全てを含めた全体は断熱系になっているから、
dQ=0より、エントロピー変化はありません。
質問の場合なら、一見エントロピーはΔS=nR*ln(Pi/Pf)
と増加しているようですが(膨張を過程),それは気体のエントロピーのみ考えているからであり、
完全気体が高熱源から準静的に熱量Qをもらっている
はずで、逆に言うと高熱源は熱量Qを失っています。
だから、高熱源はエントロピーQ/Tだけ失っているから
完全気体と高熱源をあわせた系のエントロピー変化は
-Q/T+nR*ln(Pi/Pf)=0となって、結局全体で考えれば
エントロピー変化はありません。カルノーサイクル
の例も一応挙げとくと、
高熱源のエントロピー変化量:-Q/T1
低熱源〃:(Q-W)/T2
ですけど、カルノーサイクルの効率は1-(T2/T1)より
W=Q(1-T2/T1)∴低熱源:Q/T1となって、高熱源と低熱源
をあわせた系全体のエントロピーの変化はありません。

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数...続きを読む

Q物理学を学んだ学生の就職について

物理学を学んで修士課程を終えたとして就職でどうのような選択肢がありますか?

Aベストアンサー

buturidaisukiさん、こんにちは。

就職のことはやはり気になりますよね。同じようなことを普段よく尋ねられるので、多くの卒業生を見てきた経験から現実にどうかということを書かせていただきます。

まず、結論から書きますと、ANo.1~ANo.3の皆さんも書かれているように、本人さえしっかりしていれば、大抵の会社は選択肢に入ると思います。

ANo.4さんは、分野は影響は受けると書かれていますが、ある程度、そういうこともあるでしょうが、それほどではないと私は思います。というのは、元々、理学部を卒業する場合には、勉強した「知識」をそのまま使って企業で活躍するというセンスよりも、むしろ、そこで習得した「能力」を生かすというセンスだからです。逆にもし工学部を卒業しても、そこで学習した知識がそのままどんぴしゃで企業でも使えるケースは珍しいようです。

また、物理の中での理論と実験の違いですが、私の知る限り、理論だと実験よりも会社には不利ということはないと思います。それには二つ理由があります。一つは現代の産業の現状は、IT系に重点が移ってきていて、理論系なら殆どの場合コンピューターをかなり使いますので、その面でかえって有利であること。もう一つは測定器や作業機械の使い方などは、実験系だからといって同じ機械を使うとは限りませんし、どちらにしても入社後に勉強するケースのほうが多いと思われるからです。

企業の中で、理学部出身の人が工学部出身の人よりも少ない主な原因は、日本中で工学部の定員が非常に多いことでしょう。私の見る限り、卒業生が就職で苦労するケースは、分野というよりも、むしろ個々人のパーソナリティに依ることが多いように思われます。企業では周りの環境に柔軟に順応してくれる人、しっかり意思疎通の出来る人を好むでしょうし、当然、企業の利益にかなわないことをしたいという人は、どんな学部の卒業生でも取らないでしょう。


次に具体的な現状を書きます。どこの大学とは、もちろんここでは書けませんが、卒業生の就職先はやはりIT係を中心に製造業が多いです。それは元々日本の産業構造自体がIT係に重点が移ってきているためだと思います。一言にIT係といっても、かなり幅が広いですし、IT係以外の製造業も多いです。どんな製造業でも最近はコンピューターはかなり使うと思われます。

製造業の中には当然、民間企業の研究所に就職するケースもあります。民間企業の研究所では、ごく一部の例外を除いて、その企業の利益に直結することを研究します。その内容は、物理学に基礎を置いた研究もありますし、物理学とは直接の関係のない研究をすることもあります。物理の卒業生はどちらの方向にも進んでいます。ただし「直接の関係のない」と言っても、物理はあらゆるものの基礎になりますから、殆どのものは何らかの関係はあります。

次に多いのは、公務員や中学高校教諭だと思います。その場合は、もちろん、公務員試験の勉強や、教員免許をとり教員採用試験の勉強をする必要があります。

製造業に比べれば、数は少なくなりますが、商社や金融関係に就職した人もいます。また特殊な例ではパイロットになった人もいます。


せっかく物理学を勉強したのに、就職した後に直接に関係のないものをやるのは勿体ないとか、しんどいとか思われるかもしれません。しかし、ANo.3さんも書かれているように、物理学というのは、あらゆる学問や科学技術の基礎であり、また、知識そのものを使わなくても、物理学を学ぶ過程で習得した「現実に根ざした論理的思考」というのは、どんな分野にも共通に必要なものなのです。ANo.4さんも書かれているように、「仮説・検証・修正」という物理学の方法は、あらゆることに適用が可能です。

また、「知識の陳腐化」ということがあります。技術というものは日進月歩ですから、大学でどんな分野の学問をした場合でも、どのみち入社後にも勉強をし続けていかないといけません。しかし理学系と工学系の違いは、理学部で勉強したことは、時間が立って成り立たなくなるようなことではないというところです。物理で言えば、力学や電磁気学などの知識が陳腐化することは未来永劫ありません。それらは自然界の法則だからです。ところがある特定の「技術」というものは、多くの場合数年で陳腐化してしまいます。

さらに、逆に基礎的な知識が必要になったときに、技術だけを学んでいた人が基礎に立ち戻って勉強しなおすのは、大変なエネルギーが必要になります。一度でも基礎を十分に勉強したことがある人は、忘れてしまっていても、少し勉強すれば思い出すことができます。基礎をしっかり勉強した上に応用を勉強するほうが、応用だけを勉強しているより安心です。

これは教育関係に進む場合も同様だと思います。やはり理学部でしっかりその分野の内容を勉強しつつ教員免許も取るほうが、教育学部で教員免許をとるよりも好ましいと、個人的には思っています。(両方やるのは確かに大変ですが。)


最後に、修士課程に進むメリットについて付け加えます。学部で、およそ力学、電磁気学、量子力学、熱統計力学を学習するわけですが、それは学問の基礎の部分です。卒業研究~修士課程で、研究(らしきもの)に手を染めることにより、その基礎部分の知識の本当の意味が、より正しく深く理解できます。また、現実の問題を考えることにより、「問題解決能力」も身につけることができます。研究の世界では必要に応じて問題を自分で整理して設定する能力が求められます。誰かがきれいに作った問題を解くだけの話ではなくなってくるのです。そのような能力はどんな分野に就職しても必要とされるものです。大学院ではその部分も学ぶことが出来るはずです。

buturidaisukiさん、こんにちは。

就職のことはやはり気になりますよね。同じようなことを普段よく尋ねられるので、多くの卒業生を見てきた経験から現実にどうかということを書かせていただきます。

まず、結論から書きますと、ANo.1~ANo.3の皆さんも書かれているように、本人さえしっかりしていれば、大抵の会社は選択肢に入ると思います。

ANo.4さんは、分野は影響は受けると書かれていますが、ある程度、そういうこともあるでしょうが、それほどではないと私は思います。というのは、元々、理学部を...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q実在気体のジュールトムソン係数の導出

ジュールトムソン係数は一般に
μ={T(∂V/∂T)_p - V}/Cp
と書けるので、ファンデルワールスの状態方程式の両辺をpを一定にしてTで微分し、整理することで、
(∂V/∂T)_p={R(V-b)V^3}/{RTV^3 - 2a(V-b)^2} ・・・(1)
を得る。
_pはpを一定ということです。

次からが分からない部分です。
b/V <<1, 2a/RTV <<1 のとき(1)は
(∂V/∂T)_p/V≒(1/T)+{(2a/RT)-b}/VT
となるらしいのですがここの変形が分かりません。

どなたか教えていただけないでしょうか?

Aベストアンサー

>(∂V/∂T)_p={R(V-b)V^3}/{RTV^3 - 2a(V-b)^2} ・・・(1)

これから分母のRTV^3を括弧の外に出して

(∂V/∂T)_p
={R(V-b)V^3}/(RTV^3){1 - 2a(V-b)^2/RTV^3}
={(V/T)(1-b/V)} / {1 - (2a/RTV)(1-b/V)^2}

一次までの近似を取ると,(1+x)^a~1+axの公式(テーラー展開の一次)を使い,分母の(1-b/V)^2は1以外は(2a/RTV)との積で2次以上になることを考慮すると

(∂V/∂T)_p~{(V/T)(1-b/V)} × {1 + (2a/RTV)}

さらに(b/V)(2a/RTV)が二次の微少量になるので落として1次までの近似にすると

(∂V/∂T)_p~(V/T){1 + (2a/RTV) -(b/V)}

以下,簡単な変形です.

Qデルタ関数のポテンシャル

シュレーディンガーの式
[-(h^2/2m)(d^2/dx^2)+Vδ(x)]ψ(x)=Eψ(x)・・・★
の解のx=0での接続条件はどのように求めたらよいのでしょうか?

★の両辺を-εからεまで積分し、ε→0とすれば・・・、のような事をやれば、
ψ(+0)=ψ(-0)
ψ'(+0)-ψ'(-0)=αψ(0)
という感じになったと思うのですが、どうも上手くいきません。


1.∫[-ε→ε]d^2ψ/dx^2 dx =ψ'(+0)-ψ'(-0)となる理由
(結論を見る限り、d^2ψ/dx^2はx=0で(δ関数的に?)発散していますが、この場合にも微積分学の基本定理は成り立つのでしょうか?)

2.∫[-ε→ε]Eψ(x)dx=0となる理由
(要するに、ψがx=0で有限である理由です。ポテンシャルがδ関数で発散しているので、ψもx=0でおかしなことになっていない保証はない気がするので)

3.ψ(+0)=ψ(-0)となる理由
(もう一度何かを積分すれば導けた記憶はあるのですが)

の3つが分かれば、問題ないと思います。

シュレーディンガーの式
[-(h^2/2m)(d^2/dx^2)+Vδ(x)]ψ(x)=Eψ(x)・・・★
の解のx=0での接続条件はどのように求めたらよいのでしょうか?

★の両辺を-εからεまで積分し、ε→0とすれば・・・、のような事をやれば、
ψ(+0)=ψ(-0)
ψ'(+0)-ψ'(-0)=αψ(0)
という感じになったと思うのですが、どうも上手くいきません。


1.∫[-ε→ε]d^2ψ/dx^2 dx =ψ'(+0)-ψ'(-0)となる理由
(結論を見る限り、d^2ψ/dx^2はx=0で(δ関数的に?)発散していますが、この場合にも微積分学の基本定理は成り立つのでしょうか?)

2...続きを読む

Aベストアンサー

確かにeaternさんの疑問は誰もが感じる(べき)正しい疑問だと思います。つまりこういった異常なポテンシャルを持つ問題は取り扱いが難しいことが知られています。
私が学部でポテンシャルによる散乱問題を習った時には、問題を解く時の理論的なよりどころは連続の方程式だと習ったと覚えています。そのことは確かシッフの教科書にも議論があったと思います。(卒業の時に後輩にあげたので量子力学の教科書が手元にありませんので確認できませんが)

よって波動関数が連続である必要はまったく無いと思います。しかし大抵の教科書では簡単化のためといって、波動関数の連続性を”仮定”します。一般にはこういった異常なポテンシャル問題は量子力学的意味のある系かどうか自明でありませんから、取り合えず意味のある答えがあるかどうか計算してみようよというくらいの態度だと私は考えています。取り合えずその仮定を受け入れたします。

(1)φ(+0)=φ(-0)を仮定として受け入れる。

すると以下の事が導けます。

(2)∫dx d/dx(dφ/dx)=∫d(dφ/dx)=[dφ/dx]_{-0→+0}
=dφ(+0)/dx-dφ(-0)/dx


(3)一方でd/dx(dφ/dx)=(αδ(x)-E)φですから、0を含む微小領域[-ε,+ε]で積分してεをゼロにすると

∫dx(αδ(x)-E)φ=αφ(0) -Eφ(0)*2ε=αφ(0)

なので

dφ(+0)/dx-dφ(-0)/dx=αφ(0)

が導けます(Eも定数としましたが、これも必要ないかもしれません)。

(3)を際に波動関数が[-ε,+ε]で連続だという事を仮定したのでエネルギーに比例した項の積分は積分領域の幅×原点での波動関数で近似しましたが、結局積分領域がゼロの極限をとるとゼロです。波動関数が連続であれば微分が飛んでいても積分に何の問題もありません。
これは積分領域をx<0, x>0に分けて考えれば直感的にも納得いくでしょう。関数が滑らかでないところで積分領域を分けて考えると積分は二つの領域の和です。

最終的には量子力学で使う積分、ひいては物理で使う積分はるベールグ積分の意味で定義されていると見なすべきでしょう。私は難しい事は知りませんが、とりあえずは関数が折れ線や、さらには飛びがあっても、それが一点で起こっている限り積分測度はゼロなので大丈夫だと思います。
一点の効果は積分に利きません。もしも一点から有限の値があるいう風に積分が定義されているなら、任意の線分に実数は無限に存在するので積分は全て発散してしまいます。

(2)を導く際に、dφ/dxが連続でないと言っておきながら、更にその微分を積分するのはOKかという疑問があるでしょう。一階微分の飛びは原点の一点に限られますから、その二回微分も原点では定義されていません。しかし二回微分の値など知らなくても、やはり積分領域をx<0、x>0の二つにわけて積分すれば問題ないことが理解されると思います。なぜならやはり積分測度がゼロだからです。

と大体数学的にはかなりいい加減説明ですが、物理をやる上ではこれくらいの理解で良いのではないでしょうか。気になる場合にはるベールグ積分を勉強することになるんでしょう(数学を勉強したからといって物理の全てを厳密な方法で理解できるかどうかは疑問です)。


最後に(1)の仮定ですが、これは必ずしも必要ではありません。なぜなら量子力学の要請は確立密度

j=-i(φ*∂φ-φ∂φ*)     (∂=d/dx)

が連続であればよいことだけですから。異常なポテンシャルを解析する方法にはいくつかあるでしょうが、最も物理的なのは有限なポテンシャルの極限としてそれらを理解する事です。δ(x)ポテンシャルの場合ならそれは[-ε/2,+ε/2
で高さεを持つ階段型ポテンシャルのε→0極限として理解するとか。こういう理解では通常波動関数は連続で微分が飛びます。

確かにeaternさんの疑問は誰もが感じる(べき)正しい疑問だと思います。つまりこういった異常なポテンシャルを持つ問題は取り扱いが難しいことが知られています。
私が学部でポテンシャルによる散乱問題を習った時には、問題を解く時の理論的なよりどころは連続の方程式だと習ったと覚えています。そのことは確かシッフの教科書にも議論があったと思います。(卒業の時に後輩にあげたので量子力学の教科書が手元にありませんので確認できませんが)

よって波動関数が連続である必要はまったく無いと思います...続きを読む

Q複素解析 留数って何ですか?

こんばんは、大学2年生です。現在、複素解析を授業でやっているのですが留数って何ですか?授業中に

f(z)=e二乗/(z-1)(z-2) (z=2)について証明しろと問題が
出されたのですが理解できず困ってます。

アドバイスお願いします。

Aベストアンサー

留数とは
Res[f,a]=1/2πi*∫f(z)dz  …(1)

の積分によって求められる値が留数だ!ってまず覚えてください。
この式は領域D内にある、特異点を含む単一曲線を示していると考えてください。

(z=2)は特異点ですよね?
ローラン展開しないとf(z)は分母が0になっちゃいますよね?
それが特異点なのです。だからz=1も特異点です。
ここでまた大事なのが特異点の極といわれるものです。この式の場合はどっちも(z-1)^1(z-2)^1なのでどっちも1位の極です。
    (z-1)^2(z-2)^1ではz=1では2位、z=2では1位の極となります。極は一般にはk位の極などといいます。
f(z)の特異点における留数を求めたい場合は、f(z)と求めたい特異点の極を求める必要があります。


Res[f,a]=1/2πi*∫f(z)dz  
    =1/(k-1)!*lim(z→a) d^(k-1)/dz^(k-1)[(z-a)^k*f(z)]
に極、f式を代入して簡単に求められます。

Qクラウジウス-クラペイロンの式について

以前 QNo.125760 水の温度変化の質問の中でクラウジウス-クラペイロンの式について出ていましたが、いまいち理解できません。この式について、詳しく噛み砕いてお教え願えないでしょうか?
よろしくお願いします。

Aベストアンサー

クラウジウス-クラペイロンの式は、蒸気圧曲線の傾きを求める公式です。

クラウジウス-クラペイロンの式を使うと、『蒸気圧曲線が温度の単調増加関数であること』を、簡単に証明することができます。蒸気圧曲線が温度の単調増加関数であるということは、「温度が高くなれば飽和蒸気圧が高くなり、温度が低くなれば飽和蒸気圧が低くなる」ということです。ですから、これと、「飽和蒸気圧が大気圧と等しくなる温度で液体は沸騰する」ということをあわせて考えると、

「大気圧が低ければ沸点は降下し,高ければ沸点は上昇する」

ということができます。つまり、クラウジウス-クラペイロンの式を使うと、大気圧が変わると沸点が変わることを説明できます。

以下は、クラウジウス-クラペイロンの式に関する説明です。

温度 T のときの蒸気圧曲線の傾き dP/dT は、温度 T のときの気化熱(蒸発熱)L、温度 T のときの飽和蒸気の体積 vg、温度 T のときの液体の体積 vl と、式(1)の関係があります。

dP    L
― = ――――     (1)
dT  T(vg-vl)

この式をクラウジウス-クラペイロンの式といいます。ここで、温度 T は摂氏温度ではなく、絶対温度です。また気化熱には、モル当たりの気化熱、体積 vg と vl にはモル当たりの体積を使います(気化熱に1グラム当たりの気化熱を使ってもいいです。このときは体積 vg と vl には1グラム当たりの体積を使います)。

気化熱 L は正の値、絶対温度 T も正の値、飽和蒸気の体積と液体の体積の差 vg-vlも正の値ですので、式(1)の右辺は正の値になります。よって、dP/dT > 0 となり、蒸気圧曲線が温度の単調増加関数であることが証明されました。

式(1)は、「熱力学的に厳密な式」と呼ばれる類の、とても正確な式なのですけど、このままでは少し使いづらいので、近似式が使われることが多いです。

近似1:飽和蒸気の体積 vg は液体の体積 vl よりずっと大きいので、vg-vl=vg と近似する。
近似2:蒸気を理想気体だと考えて、vg=RT/Pと近似する。ここで R は気体定数、Pは飽和蒸気圧。

この二つの近似を使うと、式(1)の近似式は式(2)になります。

dP   L P
― = ―――     (2)
dT  R T^2

この式もクラウジウス-クラペイロンの式といいます。式(1)にあった飽和蒸気の体積 vg と液体の体積 vl が式(2)では消えているので、式(2)の方が、式(1)よりも使いやすい形をしています。

もうひとつ近似を入れると、蒸気圧曲線の傾きだけではなく、『蒸気圧曲線そのもの』を求める公式を得ることができます。

近似3:気化熱 L は、温度に依らない。

この近似は、前の二つの近似と比べると、ちょっと荒い近似なのですけど、ともかくこの近似を使うと、蒸気圧曲線を求める公式が得られます。

ln(P/101325Pa)=(L/R) (1/Tb - 1/T)     (3)

この式もクラウジウス-クラペイロンの式といいます。左辺のlnは、自然対数(eを底とする対数)をとることを意味します。またTb は、圧力が1気圧=760mmHg=101325Pa のときの沸点です。

クラウジウス-クラペイロンの式と呼ばれている式がいくつもあって、ちょっと紛らわしいのですけど、まあどれも似たようなものですし、式の違いが重要なときには、たいてい数式が書いてありますから、混乱することは少ないと思います。QNo.125760 に数式が書いていないのは、高校生向けに書かれたものだからでしょう。

クラウジウス-クラペイロンの式は、蒸気圧曲線の傾きを求める公式です。

クラウジウス-クラペイロンの式を使うと、『蒸気圧曲線が温度の単調増加関数であること』を、簡単に証明することができます。蒸気圧曲線が温度の単調増加関数であるということは、「温度が高くなれば飽和蒸気圧が高くなり、温度が低くなれば飽和蒸気圧が低くなる」ということです。ですから、これと、「飽和蒸気圧が大気圧と等しくなる温度で液体は沸騰する」ということをあわせて考えると、

「大気圧が低ければ沸点は降下し,高けれ...続きを読む

Q一次元鎖

一次元鎖の問題についてです。(統計力学)
 ヘルムホルツの自由エネルギーF
 張力X
 全体の長さL
とします。
1.ΔF=-LΔX
2.ΔF=XΔL
の二つの式が成り立つわけを教えてください。
なんか、言われてみれば当たり前のような感じがする式なのですが、何かに惑わされているような気がしてなりません。
よろしくお願いします。

Aベストアンサー

カノニカル分布の応用例で出てきたのかと思いますが、
泥臭く次の様に説明できます。

長さaの要素N個よりなる一次元鎖状分子の
マイナス方向の要素の数N_、プラス方向の要素の数N+とすると
L(N_,N+)=aN_ + aN+
分子の両端が力Xで引かれているとき、一次元鎖が(N_,N+)を
取る確率P(N_,N+)は
P~exp(XL/kT)
分配関数Zは
Z=Σ(N!/(N_!*N+!)) exp(XL/kT)=exp(aX/kT)+exp(-aX/kT)
和はN_=0~N
よって
P=exp(XL/kT)/Z

これよりLの期待値LexはLex=ΣL*exp(XL/kT)/ Zとなる
和はN_=0~N

ここで ∂(lnZ)/ ∂Xを考えてみると
∂(lnZ)/ ∂X =(ΣL*exp(XL/kT)/Z)/kT=Lex/kT

ここでF=-kT*lnZであるとすれば*

Lex=∂(lnZ)/ ∂X =-∂F/ ∂X

と導出できます。しかし、*が厳密なのかこの系にだけ成立して
居るのかは検討してください。

数式のお遊びですが、質問の(1)式ー(2)式から
LΔX+XΔL=0
Δ(LX)=0、i.e. LX=const
当たり前? 何か変?

カノニカル分布の応用例で出てきたのかと思いますが、
泥臭く次の様に説明できます。

長さaの要素N個よりなる一次元鎖状分子の
マイナス方向の要素の数N_、プラス方向の要素の数N+とすると
L(N_,N+)=aN_ + aN+
分子の両端が力Xで引かれているとき、一次元鎖が(N_,N+)を
取る確率P(N_,N+)は
P~exp(XL/kT)
分配関数Zは
Z=Σ(N!/(N_!*N+!)) exp(XL/kT)=exp(aX/kT)+exp(-aX/kT)
和はN_=0~N
よって
P=exp(XL/kT)/Z

これよりLの期待値LexはLex=ΣL*exp(XL/kT)/ Zとなる
和はN_=0~N

ここで ∂(ln...続きを読む

Q中が中空の球の慣性モーメントの求め方について

中が中空の球(球殻)の慣性モーメントの求め方がわかりません。
球の質量をM、半径をaとすると2/3Ma^2となるとは思うのですが、求める過程がわからないのです。
教えてください。

Aベストアンサー

球の中心を原点とした一般的な直交座標と極座標を考えて下さい。

r≠aではρ=0なのでr=aだけを考えればよく、面積分に帰着するわけです。
球の質量はr=aに一様分布なので(面)密度ρ=M/(4πa^2)となります。

それで、座標Ω=(θ,φ)において、z回転軸周りでは面積素片はdS=a^2*sinθdθdφになりますよね。さらに軸からの距離r'=a*sinθです。

あとはI=Mr^2に沿って計算すれば、
(0<θ<π, 0<φ<2π)

I=∬ρr'^2 dS
=ρ∬(a*sinθ)^2*a^2*sinθdθdφ
=ρa^4∬(sinθ)^3 dθdφ
=Ma^2/(4π)*2π∫(sinθ)^3 dθ
=Ma^2/2*(4/3)
=(2/3)Ma^2

と、こんなもんでよろしいのではないでしょうか。
慣性モーメントの計算なんて7年ぶりくらいです。ああ、間違ってないといいけど・・・(自信なくてすみません)


人気Q&Aランキング