
No.2ベストアンサー
- 回答日時:
私も悩みました!。
素直な疑問だと思います。(1)歴史的経緯
もともとのダランベール原理は、一質点系を目的としたものではありません。多質点系のために考えられました。ニュートンの運動方程式を多質点系に適用する場合、一番苦労するのが、質点間の内力と拘束力です。
質点間の内力は、作用半作用の法則があるので、#1さんの参考URLにあるようにダランベール形式にすると(集計すると)、全てキャンセルする事がわかると思います。さらに拘束力については、続く仮想仕事の原理により、ΣS(i)×δx(i)の積は、ふつう0になり、やはり消去できます。何故なら、通常の拘束条件は曲面上に軌道が制限されるようなものであり、拘束力は曲面と(つまりδx(i)と)直交するからです。こうして形式的には、式上から二つの厄介者を消す事ができます。
(2)Lagragianの意味(なのかな?)
じつはLagragianの定式化は、ダランベールの原理によっています。
仮想仕事の原理は、系のエネルギー収支を表すようなものです。Lagragianは、通常の流れでは「仮想仕事の原理」=「変分原理」から導かれると思います。言ってしまうと、Lagragianは系のポテンシャル・エネルギーです。ただし普通のポテンシャルではなく、ダランベールの原理による仮想静止系のポテンシャル・エネルギーです。
本当の静止系では、ポテンシャルの変分をとる事で、釣り合い方程式が出ます。仮想静止系では仮想静止ポテンシャルの変分をとる事で、運動方程式が得られる、というわけです。この時、内力や拘束力のポテンシャルがない方が楽に決まっているので、それが最初にダランベールの原理を採用する、技術的理由と思えます(なくてもできるんですけどね)。
結果はLaglange方程式です。実際Laglange方程式は、-ダランベールの原理=0 の形になっています。
(3)という訳で
本当の静止系でもそうなのですが、ポテンシャルに拘束力のポテンシャルなどがなかったとしても、全ての変数は独立ではないので、独立に変分がとれなくなります。そこで独立な任意の変数に座標変換して、処理します。
仮想静止系でも同じです。独立な変数に座標変換して、独立にLaglange方程式を導きます。ここで変分法の威力が発揮され、任意の座標変換に対して、Laglange方程式は不変だという性質ばかりが、この後強調されて行きます。
という訳で、Lagragianから内力と拘束力のポテンシャルを除き、独立な変数に座標変換してまった後では、お役御免という事で、ダランベールの原理は「跡形も無い」わけです。
この回答への補足
なるほど。Euler-Lagrangeの方程式を導く過程で変分法を使う根拠がイメージつかめなかったのですが、それも
「ポテンシャルの変分」と解釈できるのでしょうか。
結局、ポテンシャルを時間で積分したものの極値が実現される理由も、やはりイメージできませんが。。。
No.4
- 回答日時:
#3です。
表記ミスをしました。・Pの式の中で、ρAgx は ρAgW の誤りです。
・(xに関する初期条件)の部分は、(W(x)に関する初期条件)の誤りです。
No.3
- 回答日時:
余談ですが、今朝 Windows の Loader が動かなくなって、復旧に一日かかりました。
・・・やれやれ。>なるほど
と仰って頂けたので、ダランベールの原理については、とりあえずいいでしょうか?。
>Euler-Lagrangeの方程式を導く過程で変分法を使う根拠がイメージつかめなかった・・・
結局は、そこに行き着きますよね。以下にはかなり、個人的な独断が含まれています。
Lagragian の成立過程では、今から見れば論理的に無関係な二つの側面が、歴史的にはからみあっていたと思われます。神に関する思い込みと、形式的抽象化という二つの側面です。
(1)神に関する思い込み
・神が自然を(物理を)造った.
・神は完全である.
・ゆえに自然の設計においても神様は、無駄は皆無の極限設計をなさったに違いない。
・よって物理法則は、何かの量を最小化するように定式化できるはずだ.
以上が思い込みです。この感覚でいけば、物理法則に変分原理を採用するのは、最初から当然の事となります。そして動力学の変分原理(最小作用の原理とLaglage方程式)の以前に既に、静力学では、ポテンシャル最小原理という変分原理が得られていました。この背景のもとに、次の形式的対応が気づかれます。
(2)形式的抽象化
天井から吊るされた、一様な棒の自重(重力)による伸びを考えます。棒の断面積をA,ヤング率をE,密度をρとした時、この系のポテンシャルは、
P=∫(1/2(EAε^2)+ρAgx)dx
となります。ここでεは棒の歪みで、棒の各点の変位をw(x)とした場合、ε=dw/dxと表され、xの方向は鉛直上向きにとっています。Pの変分を取ると、棒の各点の釣り合い方程式が得られます。結果は、
E・dε/dx-ρAg=0 (a)
です。これを解いて、境界条件(xに関する初期条件)を与えれば、棒の延び方がわかります。一方、等加速度落下の運動方程式は、
m・dv/dt+mg=0 (b)
です。ここで t は時間,v=dx/dt,mは質点の質量です。(a)と(b)を「形式的に」比較すると、(b)は、
S=∫(1/2(mv^2)-mgx)dt
の変分から得られる事がわかります。Sは作用積分であり、Sの積分の中身が Lagragian です。この事実を(1)に結びつけると、作用こそが、最小化すべき量だ、という事になります。
(3)役割と単位がずれている
Pには、系のポテンシャル・エネルギーというはっきりした意味があり、(a)にも、ポテンシャル・エネルギーの最小化から得られる釣り合い方程式という、明らかな意味があります。
ところが動力学において、Pの相当するものはSであり、これはエネルギーの単位を持っていません。そしてその中身の Lagragian がエネルギーの単位を持っています。なので正確に言うと、仮想静止系のポテンシャル・エネルギーに相当するのは、作用の方であり、エネルギーの単位を持っている Lagragian ではありません。
このような事が起こったのは、「形式的対応」に基づいて、Lagragian が定式化されたからだと思えます。
しかも動力学の Lagragian がエネルギーの単位を持つために、静力学における Lagragian、すなわちPの中身を、ラグラジアン密度と呼ぶ習慣がある一方で、動力学の Lagragian を「運動ポテンシャル」と言う習慣もあります。これらが話を、さらにややこしくします。もう、笑っちゃいますよね・・・。
でも実態は、以上に述べた状況だと、自分は思っています。ラグラジアン,ハミルトニアンへの道程は、古典力学内では、数学的な思い込みだと思えます。ゲージ理論以降に、その物理的意味が、やっとはっきりして来たという印象を受けます。
No.1
- 回答日時:
私の考えが正しいかどうかわかりませんが、
数式を表面的に見ているだけでは、
ニュートンの法則もダランベールの原理も、
ただ式を移行しただけで、何の違いもないですが、
物理的に考えると
http://www12.plala.or.jp/ksp/formula/physFormula …
に書いてあるような違いがあります。
ダランベールの原理を習う理由は、
そうふうに、物事を現象に即して物理的に
考える力を、養うのが目的ではないかと思います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 教育・学術・研究 仕事の方向性を変えたい。経営分析→数値解析 1 2023/06/18 16:51
- 物理学 大学で物理学を学んでいる人、大学で物理を学んでいた人へ質問です。 私は現在大学1年で、物理を学んでい 2 2022/10/03 20:00
- 物理学 物理学 工学 自然科学 4 2023/04/27 10:26
- 大学受験 自己推薦書の添削や意見・アドバイスお願いします 2 2022/08/27 19:34
- 中途・キャリア さて、社会人になってから13年目。 今まで、機械設計、機械製品の品質管理、部門の経営企画をやってきま 4 2023/07/17 08:59
- 数学 工学部の数学の勉強の仕方 新しい理論と問題を解くこと 4 2022/04/30 13:16
- 哲学 説得力を論理の強さまたは修辞の巧みさの2つに分析するにはどうすると良いでしょうか? 4 2022/07/05 04:47
- 統計学 加重最小二乗法=①「変数を自然対数変換」=②「誤差項の分散の逆数を重み付け」? 8 2022/11/26 11:15
- 家政学 編入試験について 1 2022/08/22 03:00
- 宇宙科学・天文学・天気 AIが答えた方程式 1 2023/02/20 00:12
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
スパン方向とはどの方向ですか?
-
質量m 半径aの一様な円環の慣性...
-
高校物理基礎で、変位と位置の...
-
径方向?放射方向?
-
段差を乗り越えるのに必要なト...
-
表式ってなんですか?数学用語?
-
英語で位置は何というんでしょう?
-
「陽に含まない」について
-
ラディアル方向・タンジェンシ...
-
2つのバネに挟まれた物体の振動...
-
2物体の慣性モーメント
-
鉛直面内での、円運動を考える...
-
流体力学 円筒座標系
-
有限要素法の形状関数とは?
-
軸対称の力のつりあい式について
-
sinaiのビリヤードとは?
-
「右」という概念の定義について
-
直交座標系で表す熱伝導方程式...
-
球の慣性モーメント
-
角運動量・トルクを使わずに解...
おすすめ情報