
No.1ベストアンサー
- 回答日時:
y=f(x)=e^(-x)+(x/5)-1
y'=f'(x)=(1/5)-e^(-x)
f'(x)=0のとき x=log_e 5=xa≒1.6
f'(x)<0(x<xa),f'(xa)=0,0<f'(x)(x>x1)
x<xaの時
f(x)単調減少、f(0)=0 ⇒ f(x)<0 (0<x<xa)
x=xaで最小(極小)値min= f(xa)<0
x>xaで
f(x)単調増加, f(xa)<0<f(5)=1/e^5>0 ⇒ xa<x<5の間でf(x)=0
y=f(x)はx=0とxa<x<5の間でx軸と交点を持ちます。
x<x1で単調減少、x1<xで単調増加ですから
ニュートン法でxa≒1.6<x<5の与えられた方程式の解を求めるには
初期値xoをxa<xを満たし、できるだけx=5に近い初期値に選べば収束が早いという事です。
普通、初期値は半端でない区切りのよい値を選びますので、整数値なら
xo=5がベストです。xo=4,6,3,7の順に少しずつ収束回数が増加しますが、殆ど繰り返し回数の差は数回以内でしょう。ですから初期値xoは3以上であれば収束回数には殆ど差がないですから、必ずしもxo=5でなくても良いかと思います。
ただ,f(5)=(1/e^5)>0と値が確定的に決定できるという点でxo=5は分かりやすい数なのです。
これに反し、f(4)=(1/e^4)-(1/5)は直感的に正負が分かりにくいということです。きちんと計算すれば挟み撃ち法で
(1/3^4)-(1/5)=(1/81)-(1/5)<f(4)<(1/2^4)-(1/5)=(1/16)-(1/5)<0
⇒ f(4)<0
という事は分かりますが,f(5)のようなすっきりした値にはなりません。
No.2
- 回答日時:
この程度の関数なら目算でもわかりますが、ふつうは粗っぽいグラフを描いてみるのがベターです。
この、
y(x) = e^-x+(x/5)-1
では、初期値=0 にしちゃうとそこから脱け出せず、もう一つの零点へアプローチできないのです。
「粗っぽいグラフ」を眺めれば、「初期値5に決定する」理由が納得できます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
微小量とはいったいなんでしょ...
-
微分積分に関する質問
-
数学の f(f(x))とはどういう意...
-
数III 不等式 教えてください
-
xの多項式f(x)最高次の項の係数...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
大学の問題です。
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
y=−x3乗+3x2乗+x-3 の答...
-
微分可能
-
lim(x→0)sinx/x について、ロピ...
-
ニュートン法について 初期値
-
大学受験数学
-
三次関数が三重解を持つ条件とは?
-
lim tanx-sinx/x^3 x→0 という...
-
積分する前のインテグラルの中...
-
数III 微分の質問です。
-
ほんとに何度もすみません。 ど...
-
次の解析学の問題が解けないの...
-
証明問題
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の f(f(x))とはどういう意...
-
f(x) g(x) とは?
-
差分表現とは何でしょうか? 問...
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
"交わる"と"接する"の定義
-
極限、不連続
-
【数3 式と曲線】 F(x、y)=0と...
-
微小量とはいったいなんでしょ...
-
左上図、左下図、右上図、右下...
-
マクローリンの定理の適用のし...
-
マクローリン展開
-
ニュートン法について 初期値
-
微分について
-
数学の記法について。 Wikipedi...
-
数学の問題で質問があります。
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
f(x)=sin(x)/x って、とくにf(0...
-
関数 f(x) = e^(2x) につい...
-
マクローリン展開の問題です n=...
おすすめ情報