No.1ベストアンサー
- 回答日時:
その f(x) は、実数全域で微分可能なので、
f(c) が極値であるような c については f'(c)=0 でなくてはなりません。
そのため、「f(x)が極大値と極小値を2つずつもつ」ことの必要条件として、
f'(x)=0 が解 x を 4 個持たなくてはならない。
f(x)=(xの3次式)/(x^2+1) ですから、商の微分法則によって
f'(x)=(xの4次式)/(x^2)^2 となります。分子の4次式を具体的に計算し、
分子=0 が実数解を 4 個持つ条件を求めてみましょう。
その 4 個の解の近傍で、f'(x) の符号が、(+)→(-) と変わるもの 2 個、
(+)→(-) と変わるもの 2 個になっていれば十分です。
分子の4次関数のグラフを考えれば、判定できますね。
No.3
- 回答日時:
概ね、それでよいが、
f'(x)=0 が 4 個の解を持つことは、
必要条件に過ぎない。
A No.1 に書いた如く、十分性の確認は要る。
例えば、f(x)=∫(xの2乗)(x-1)(x-2)(x-3)dx
のとき、何が起こる?
No.2
- 回答日時:
>f(x)が極大値と極小値を2つずつもつということは、f'(x)=0が
異なる4個の実数解をもつということ。
f(x)=2x+ax/(x^2+1)={2x^3+(a+2)x}/(x^2+1)
f'(x)=[(x^2+1)(6x^2+a+2)-2x{2x^3+(a+2)x}]/(x^2+1)^2
=[(x^2+1)(6x^2+a+2)={2x^4+(4-a)x^2+a+2}/(x^2+1)^2
(x^2+1)^2≠0なので、2x^4+(4-a)x^2+a+2=0が異なる4個の実数解を
もつためには、x^2=yと置き換えた2y^2+(4-a)y+a+2=0が異なる2個の
正の実数解をもたなければならない。そのためには
2y^2+(4-a)y+a+2=2{y^2+(4-a)y/2}+a+2
=2{y+(4-a)/4}^2+a+2-(4-a)^2/8=2{y+(4-a)/4}^2+(16a-a^2)/8
から(16a-a^2)/8<0が必要で、かつyの解のうちの小さい値が正、
[-(4-a)-√{(4-a)^2-8(a+2)}]/4>0が必要。
(16a-a^2)/8<0からa(16-a)<0、a<0または16<a・・・・・(ア)
[-(4-a)-√{(4-a)^2-8(a+2)}]/4>0から{-(4-a)-√(a^2-16a)}>0
-(4-a)>√(a^2-16a)、左辺>0から4<a・・・・・(イ)
二乗して16-8a+a^2>a^2-16a、a>-2・・・・・(ウ)
よって定数aの値の範囲は(ア)(イ)(ウ)から16<a・・・答
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 関数の極値と微分係数の関係について 6 2023/04/23 14:35
- 数学 条件付き極値問題といわれる問題です。ラグランジュの乗数法 について、質問したいことがあります。 条件 3 2023/05/15 21:38
- 高校 ヘッセ行列を使って関数の極値を求める問題についてです。 極値は求められるのですが、そこから極小値極大 1 2022/11/20 15:21
- 数学 数学IIについて質問です 関数f(x)=x^3+2x^2-2について、x=2における微分係数は【?? 3 2022/09/11 20:29
- 数学 f(x)=2x+∮(0~1)(x+t)f(t)dt を満たす関数f(x)を求めよ。 3 2022/07/05 22:54
- 数学 2013 慶応(らしいです) 1 2022/06/14 21:15
- 数学 数学 2時間数に関わる問題について教えてください。 x≧1 y≧-1 2x+y=5 であるとき、xy 7 2022/10/29 10:57
- 数学 微分の意味ついて質問が有ります 4 2023/04/05 23:17
- 大学受験 ある大学の過去問なのですが、回答に解説がなく困っています。誰かこの問題の解説をつけて欲しいです(тт 1 2022/11/03 22:44
- 数学 有限な値を取るための条件って一般化できるのでしょうか 6 2022/08/25 15:45
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
フォントについて教えてください!
みなさんの一番好きなフォントは何ですか? よく使うフォントやこのフォント好きだなあというものをぜひ教えてください!
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
数学Ⅲです。 f(x)=2x+ax/(x^2+1)が極大値と極小値をそれぞれ2つずつもつように、定数
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
二次関数 必ず通る点について
-
左上図、左下図、右上図、右下...
-
f(x) g(x) とは?
-
単射 全射 全単射 について...
-
数学の質問です
-
ニュートン法について 初期値
-
関数f(x)がC∞-級関数であること...
-
任意のn(自然数)に対してS^(n-1...
-
黄色のx-1は、緑の①②のどちらの...
-
マクローリン展開
-
"~は…で抑えられる"を英語で言...
-
パーセバルの等式
-
d/dx∫_a^x f(t)dt=f(x)が成り立...
-
大学への数学(東京出版)に書...
-
数学の記法について。 Wikipedi...
-
複素関数f(z)のテーラー展開や...
-
極値って極大値か極小値のどち...
-
関数 f(x) = e^(2x) につい...
-
数学II 積分
-
微分可能なのに導関数が不連続?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
"交わる"と"接する"の定義
-
二次関数 必ず通る点について
-
ニュートン法について 初期値
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
微小量とはいったいなんでしょ...
-
数学II 積分
-
微分について
-
二重積分を使った回転体の体積...
-
三次関数が三重解を持つ条件とは?
-
微分の公式の証明
-
左上図、左下図、右上図、右下...
-
数学の洋書を読んでいて分から...
-
関数 f(x) = e^(2x) につい...
-
どんな式でも偶関数か奇関数の...
-
フーリエ変換できない式ってど...
おすすめ情報