No.9ベストアンサー
- 回答日時:
こんばんは。
また、計算まちがえています。
log_10(2)=0.3010だから1-log_10(2)=1-0.3010=0.6990なので
log_2(5)=({1-log_10(2)_/{log_10(2)}=0.6990/0.3010
=2.322259くらいか。関数電卓でlog_10(2)を求めて
({1-log_10(2)_/{log_10(2)}を計算すると、
2.32192809489と出ました。私のANo.7の回答で、
>2^(2+1/3)=4×2^(1/4)×2^(1/16)×2^(1/16)×...
ところが、4×2^(1/4)×2^(1/16)×2^(1/16)
=4×2^(1/4)×2^(1/16)×2^(1/16)
=4×√√2×√√√√2×√√√√√√2
≒4×1.2553803=5.0215212となる。
のところを、
2^(2+1/3)=4×2^(1/4)×2^(1/16)×2^(1/16)×...を
4×2^(1/4)×2^(1/16)で切り捨てる、つまり
2^(2+1/4+1/16)=4×√√2×√√√√2
として
2^(2.3125)=≒4×1.189207×1.04427=4.96741<5となり、
2.3125<log_2(5)と分かる
これから2.3125<log_2(5)<2.3333とでてくる。
◎昔、電卓で2^(1/3)を計算したことがありましたが
そのときは
1/3={1/4/(1-1/4)}=1/4+1/16+1/64+.. を
使わずに、掛け算だけの計算で近似値を小数第4位くらいまで
求めたことがあります。
「あと、電卓でおもしろいのは。0以外のかってな数を置数して、
√キーを何回でも押しつづけると、どうなるか?」
簡単ですけど不思議に思ってくれる人もいる。
「実際に何乗根なども電卓だけで計算してみると、
ホーと言ってくれる方もいる。」
No.8
- 回答日時:
logの近似値を簡単に求める有名な方法があります。
答えをxと置きます。
log_2(5) = x
右辺をlogの形に書き換えます。
log_2(5) = log_2(2^x)
両辺のlogを消します。
5 = 2^x
x = n/mとします。
5 = 2^(n/m)
両辺をm乗します。
5^m = 2^n
ここまで来たら、5^m ≒ 2^nとなるn,mの値の組を考えます。
5^3 = 125 ≒ 128 = 2^7
がパッと思いつきます。(思いつかなかったらn,m=1から順に書き出して近い値を探します)
x = n/mなので、答えは
log_2(5) ≒ 7/3 = 2.3333…
となります。
正しい値は2.3219…ですから、かなり近いことが分かります。
ちなみにこの方法の問題点は誤差の評価ができないことです。
誤差の評価とはNo7さんがやっているような
>log_2の5は2.30よりは大きく2.33333..よりは小さい
のように正しい値が何以上何以下と判定することです。
この方法では常に片側しか評価できません。
ですから数学的にはまったく意味を成しませんが、感覚的に「125が128に近い程度にlog_2(5)は2.333…に近い」という判断はつきます。
この程度の厳密性しか求められない用途には非常に役立ちます。
No.7
- 回答日時:
おはようございます
#3です。昨日 対数でやる方法は誰でも思いつくので根源に戻って
手計算でやっていましたら パソコンの調子が悪くなり失礼しました。
さて、続きですが
1/3={1/4/(1-1/4)}=1/4+1/16+1/64+.. なので以下√つき電卓でやると
2^(2+1/3)=4×2^(1/4)×2^(1/16)×2^(1/16)×...
ところが、4×2^(1/4)×2^(1/16)×2^(1/16)
=4×2^(1/4)×2^(1/16)×2^(1/16)
=4×√√2×√√√√2×√√√√√√2
≒4×1.2553803=5.0215212となる。
つまり2^(2+1/3)は5より少し大きい
よって log_2の5は2.3333333...よりは小さい。
(1.23)^(10)=7.9259454
(1.24)^(10)≒8.5944246 ゆえに(1.23)^(10)<8<(1.24)^(10)
ゆえに
1.23<2^(3/10)<1.24 ゆえに4×1.23<2^(2.3)<4×1.24
つまり 4.92<2^(2.3)<4.96
よって log_2の5は2.30よりは大きく2.33333..よりは小さい
しかし 「日が暮れて道遠し」やっぱり対数の理論を使った方が早い。例えばlog_10(2)≒0.3010なので
底変換の公式を使い、log_2(5)={log_10(10/2)}/{log_10(2)}
={1-log_10(2)}/{log_10(2)}=0.6989/0.3010=2.3219269(割り算に電卓使用しました)
と大体求まる。対数の理論は何て素晴らしいのだろう
ネイピアありがとう。
No.6
- 回答日時:
こんばんは。
log_2の5だから、2を何乗したら5になるかと考える。
2^2=4 ,2^3=8だから2の2乗と3乗のあいだと検討をつける。8だと5から大分
離れているので、2の2.5乗だと5を越えてしまうだろう。
事実 2^(2.5)=2^2×2^(1/2)=4×√2=4×1.4142...=5.656...
また 2^(2+1/4)=4×√√2=4×√(1.414213...)で
(1.2)^2=1.44、(1.18)^2=1.3924 4×1.18=4.72 少し足りない。
(1.19)^2=1.4061で4×1.19=4.72 だから
おそらく2.25乗では足りないだろう。
1/3={1/4/(1-1/4)}=1/4+1/16+1/64+.. I'M SLEEPY MATAKONNDO
NIHONGO HENNKANN OKASIKUNATTASHI
No.5
- 回答日時:
常用対数の
log2=0.3010
log3=0.4771
log7=0,8451
この3個は暗記しています。もう、何十年も忘れませんね。これさえ
覚えておけば、日常の対数計算に不便は感じません。電卓は不要です。
あっ、それともうひとつ、
log2.71828=0.4343
でした。
No.4
- 回答日時:
Windowsの電卓で関数電卓モードにして、log5/log2を計算します。
[2],[log],[MS],[5],[log],[/],[MR],[=]
で、出た答えが2.3219280948873623478703194294894です。
No.2
- 回答日時:
google検索で
「ln(5)/ln(2)」
または
「log(5)/log(2)」
と入力して検索すると
log(5) / log(2) = 2.32192809
と計算してくれます。
No.1
- 回答日時:
log2の5をlog_2(5)と書くことにします
log_2(5)
=log_2(10)×log_10(5)
=log_10(5)÷log_10(2)
=0.6990.......÷0.3010.........
=2.32.................
log_2(4)=2ですから、だいたいこんなもんでしょう
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
AIツールの活用方法を教えて
みなさんは普段どのような場面でAIツール(ChatGPTなど)を活用していますか?
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
log2,5の値
数学
-
(3)番。 なぜlog2 5が1になるんですか?
高校
-
(3)なのですが、 なぜlog2 5が1になるのか分かりません。 約分はして見ましたが、logだけが
高校
-
-
4
eのlog2乗がなんで2になるのですか? 明日テストなので教えてください
数学
-
5
e^(x^2)の積分に関して
数学
-
6
∫1/(x^2+1)^2 の不定積分がわかりません
数学
-
7
対数・指数の値の大小
数学
-
8
logeの計算
数学
-
9
Π←これは一体?
数学
-
10
偏微分の記号∂の読み方について教えてください。
数学
-
11
e^-2xの積分
数学
-
12
世代時間の計算(微生物学)
生物学
-
13
常用対数の求め方 log10の2は約0.3010…ですがこの求め方を教えて下さい。0.1から順番に計
数学
-
14
「これはヤバかったな」という遅刻エピソード
みんな教えて!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・ことしの初夢、何だった?
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
∫{x/(x+1)}dxの解き方
-
e^x=2のときのxの求め方
-
eの指数の計算がわかりません。
-
log2の5は?
-
1/(1-x)や1/(1+x)の積分形
-
両対数グラフでの直線の傾きと...
-
∫log(x^2)dxの不定積分を教えて...
-
256は2の何乗かを求める式
-
log3^1はなんで0になるんですか?
-
lnをlogに変換するには・・
-
y=x^x^xを微分すると何になりま...
-
関数電卓の使い方
-
自然対数をとる?とは・・・
-
透過率から吸光度を計算する際...
-
lim[x→∞]log(1+x)/x これってど...
-
超初歩的質問ですが・・
-
連続ガス置換の式
-
5の30乗は何桁の数か。ただし、...
-
0あるいは負数の対数は存在し...
-
2を何乗すると6になりますか? ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
∫{x/(x+1)}dxの解き方
-
lnをlogに変換するには・・
-
log3^1はなんで0になるんですか?
-
1/(1-x)や1/(1+x)の積分形
-
256は2の何乗かを求める式
-
y=x^x^xを微分すると何になりま...
-
自然対数をとる?とは・・・
-
e^x=2のときのxの求め方
-
関数電卓の使い方
-
2を何乗すると6になりますか? ...
-
∫log(x^2)dxの不定積分を教えて...
-
log2の5は?
-
超初歩的質問ですが・・
-
透過率から吸光度を計算する際...
-
なぜxがe^logxと変形できるので...
-
lim[x→∞]log(1+x)/x これってど...
-
eの指数の計算がわかりません。
-
0の2乗はいくつですか?
-
両対数グラフでの直線の傾きと...
-
∫1/x√(x^2+1) の積分について。
おすすめ情報