No.1ベストアンサー
- 回答日時:
どちらも同じような問題ですね.
Z/nZの単位元aとは,ax ≡ 1 (mod n) (合同式ってご存知ですか?)なる数bが存在するaのことですね.
この式は ax + ny = 1 というx,yの方程式に整数解があることと同値です.
また,環が体であるための必要十分条件は,0以外の全ての元に(積に関する)逆元があること,つまり0以外の全ての元が単元であることです(重要なのでよく確認してください).
だからあとは ax + ny = 1 が解を持つための a の条件を考えればよいわけです.
それはご自分で考えてみてください.必要条件は公約数に,十分条件はユークリッドの互除法に注目すれば導けます(前者は簡単).
(2)は φ(n) = n-1 となるためのnの条件ですね.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 大学数学の代数の問題です。 ・HをGの部分群とする。 (1)任意のg⊂Gに対し|gH|=|H|を示せ 3 2022/07/06 12:37
- 数学 群準同型の個数 2 2023/08/21 22:13
- 数学 「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー 3 2022/08/27 19:56
- 数学 実数の収束と上限 4 2023/01/20 22:46
- 数学 Zを整数の加法群とする。 M={7,8}はZの生成形になることを示せ。(Z=〈7,8〉となることを示 3 2022/11/20 22:14
- 数学 大学数学の代数の問題です。 pを素数とし、Gを位数がpの郡とする。GとZ/pZが同型であることを示せ 2 2022/07/10 21:12
- その他(教育・科学・学問) 関数、写像について 1 2022/04/10 23:45
- 数学 数学(代数学)について。 整域Z[√-3]は一意分解整域ではないが、0と単元でないZ[√-3]の任意 4 2022/08/27 11:07
- その他(教育・科学・学問) NからZへの全単射を具体的に構成せよ。 N:自然数、Z:整数 を教えてください。 中々案が思いつかず 2 2023/07/11 10:59
- 数学 有限生成環から体へのC代数準同型写像についての質問 1 2023/03/08 12:15
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
16の4乗根は±2ではない!?
-
Excelで合計値を基にデータを均...
-
一枚の板から何枚取れるか?
-
微分の重解条件は公式として使...
-
複数の品目での単価と全体の合...
-
三次関数の極値を持つ条件はな...
-
数学II 三次方程式 x^3-5x^2+ax...
-
二次不等式について
-
関数の連続性
-
数学の問題ですが・・・
-
ガウス記号を伴う東工大の問題...
-
x^y=y^x (x>y)を満たす整数解は...
-
3次関数と1次関数が接するとき
-
次の関数が,与えられた微分方...
-
微分方程式の解を、微分方程式...
-
3次方程式の解の範囲について
-
数学についてです 「 aを定数と...
-
「この解は問題にあう」中学2...
-
3次関数と直線が接する場合、...
-
方程式と不等式
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
16の4乗根は±2ではない!?
-
Excelで合計値を基にデータを均...
-
tanX=Xの解
-
適正解と最適解
-
aの値に関係なくとよく問題で見...
-
数学についてです 「 aを定数と...
-
微分方程式 定常解について・・・
-
3次関数と直線が接する場合、...
-
二次不等式について
-
3次関数と1次関数が接するとき
-
解なし≠解はない
-
微分の重解条件は公式として使...
-
3次方程式の定数の範囲の問題で...
-
数1 この問題の(3)で少なくとも...
-
複数の品目での単価と全体の合...
-
解に3つ以上±や∓がある時複号...
-
答えを教えて
-
x^y=y^x (x>y)を満たす整数解は...
-
数学I 二次方程式について次の...
-
数学の質問です。 2つの2次方程...
おすすめ情報