exp(e^x)の微分,積分がわかりません;;


exp(e^x)の微分はe^xexp(e^x)となるとは思うんですがこれは正しいでしょうか?

exp(x^2)の積分はできませんよね?ではexp(e^x)の積分はできるんでしょうか??

回答お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

#2です。


A#2の補足質問の回答
>y(x)=3exp(e^x)+C
>と教授が板書しました。
>これはあっているのでしょうか?

すでに#3さんが回答されている通り合っています。

dy=3{exp(e^x)}(e^x)dx
=3{exp(e^x)}'dx
両辺積分して
y=3exp(e^x)+C
となりますね。
    • good
    • 1

その板書はあってます.


y を x で微分して戻ることを確認してください.
    • good
    • 2

{exp(exp(x))}'=exp(x)*exp(exp(x))



∫exp(exp(x))dxは解析的には積分できません。
大学レベルですが、
超越関数(特殊関数)の指数積分関数Ei(x)
http://keisan.casio.jp/has10/SpecExec.cgi?path=0 …
http://reference.wolfram.com/mathematica/ref/Exp …
を使えば積分は
=-Ei(1,-e^x)+C
と表される。

また不完全ガンマ関数γ(α,x)
http://ja.wikipedia.org/wiki/%E4%B8%8D%E5%AE%8C% …
を使えば積分は
=-γ(0,-e^(-x))+C
と表せます。

この回答への補足

細かいとこまでありがとうございます.

大学の授業で
dy/dx=3exp(e^x)e^x
この変数分離系をといて
y(x)=3exp(e^x)+C

と教授が板書しました。

これはあっているのでしょうか?

この教授は間違えが多くて疑いが・・・

補足日時:2009/05/23 21:01
    • good
    • 1
この回答へのお礼

回答ありがとうございます。

お礼日時:2009/05/23 20:59

こんばんは。



exp() と e^x が混在しているのは、よろしくありませんね。
exp(a) = e^a ということですよね?
・・・であるとして、


>>>exp(e^x)の微分はe^xexp(e^x)となるとは思うんですがこれは正しいでしょうか?

y=e^(e^x) の微分は、かっこの中のe^xを e^x=t と置いて、
dt/dx = e^x
dy/dt = e^t
{e^(e^x)}’= dy/dx = dy/dt・dt/dx
 = e^t・e^x
 = e^(e^x)・e^x  ←ここまでは、あなたと同じ
 = e^(e^x + 1)


>>>exp(e^x)の積分はできるんでしょうか??

さー
私にはできません。
「二重指数関数の積分」で調べてみましたけど、見つかりませんでした。


以上、ご参考に。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

お礼日時:2009/05/23 21:00

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題と

数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題とくかわかりません。問題のどの部分を見てどちらの公式を使うか教えて下さい。

Aベストアンサー

まず置換積分できるか調べましょう.このためには被積分関数を二つの関数の積と考え,一方の関数が他方の関数の原始関数の関数になっていれば置換積分が使えます.すなわち,被積分関数を f(x)g(x) と表したとき,G'(x)=g(x) である G(x) を用いて f(x)=h(G(x)) となる関数 h(u) が見つかれば
∫f(x)g(x)dx = ∫h(G(x))G'(x)dx = ∫h(u)du
です.例えば
(log 2x)/(x log x^2) = h(log x){log x}'
h(u) = (u + log 2) / 2 u = 1/2 + (log 2)/2u
だから
∫(log 2x)/(x log x^2)dx = (1/2){log x + (log 2)log(log x)} + C
となります.
置換積分がダメそうなら部分積分できるか調べましょう.概してこちらの方が調べるのが面倒です(とくに漸化式を使う場合).

Qロピタルでも解けない?極限lim[x→0](e^tanx-e^x)/(e^sinx-e^x)

極限
lim[x→0](e^tanx-e^x)/(e^sinx-e^x)
を求めたいのですが、0/0型となります。
ロピタルの定理を用いて、分母分子をそれぞれ微分しようとしても、逆にややこしい式になります。
どのようにすれば解けるでしょうか?

Aベストアンサー

ロピタルの定理を繰り返し用いれば,求められますよ.
f(x) = e^(tan x) - e^x,
g(x) = e^(sin x) - e^x
とすると,
f(0) = g(0) = f'(0) = g'(0) = f''(0) = g''(0) = 0,
f'''(0) = 2, g'''(0) = -1
より,
lim[x->0] f(x)/g(x)
= lim[x->0] f'(x)/g'(x)
= lim[x->0] f''(x)/g''(x)
= lim[x->0] f'''(x)/g'''(x)
= 2/(-1)
= -2.
計算はご自分で.

Q積分公式の記述での使い方

記述式の問題で積分公式(インテグラル無しで面積を求められるやつです)を使っても減点はないでしょうか。


例えば、こんな感じで

積分公式よりS=~



積分公式は教科書に載っていないので、こういう使い方が受験に通じるのか不安です。回答お願いします。

Aベストアンサー

こんばんわ。

確かに「積分公式」ってなんのことでしょうか?
それも「インテグラル無しで面積を求められるやつ」とは・・・?

もしかして、次のような式のことですか?
∫[α→β] (x-α)(x-β) dx= -1/6* (β-α)^3

いずれにしても、
>積分公式よりS=~
といった表現では通用しません。
すでに、ここの質問でも通用していないくらいですから。

単に積分の計算であれば、とくに明記せずに用いてもいいと思います。
この式自体を示せと言われれば、きちんと計算しないといけません。

Qf(x)=x^x+e^e の微分

正答と自分のだした答えが合いません。 答えに導き出す方法を教えてください。

自分でやったところ↓
f(x)=x^x+e^e
log f(x)=log x^x+log e^e
=xlogx+eloge
f '(x)/f(x)=logx+x/x+0
f '(x)=(logx+1)(x^x+e^e)

と自分で出したのですが、正答は↓
f '(x)=(logx+1)(x^x)
と出ています。

自分の答えからどのような過程で正答にたどり着けますか?

Aベストアンサー

>自分の答えからどのような過程で正答にたどり着けますか?

>自分でやったところ↓
>f(x)=x^x+e^e ...(★)
>log f(x)=log x^x+log e^e ...(◆) ←この式が間違い
正しくは
log f(x)=log(x^x+e^e) ,,,(●)
≠log x^x+log e^e ...(◆)
>=xlogx+eloge ← この式は間違いの(◆) の式に等しいけど、正しい(●)の式とは別物。
なので以下の式も間違い。
>f '(x)/f(x)=logx+x/x+0
>f '(x)=(logx+1)(x^x+e^e)

(●)のように対数をとらないで(★)の式を
直接微分した方が良いでしょう。
f(x)=x^x+e^e
  =e^(xlog(x))+e^e
f'(x)={e^(xlog(x))}(xlog(x))'={e^(xlog(x))}(log(x)+x/x)
=(x^x)(log(x)+1)

■公式:a^b=e^(blog(a))
を覚えて置くこと(今の場合a=b=xのケースです)

Q分点座標が±0.5のGauss-Legendre積分公式を知りませんか。

高精度化が必要な数値計算をやっています。
特に、数値積分の高精度化が必要なため、Gauss-Legendre積分公式の使用を考えています。
ただし、解く方程式が積分方程式であるなどの理由からそのままでは使用できません。
使用するためには、Gauss-Legendre積分公式の分点座標が区間の中心である必要があります。
例えば、分点数が2の場合、通常は座標x=±0.57735...重みw=1ですが、これを座標x=±0.5とできるような積分公式はないでしょうか?

Aベストアンサー

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の多項式で近似できるf(x)を扱う場合に旨く行きます。

 さて、ご質問は、おそらく積分範囲 x=-1~1に対してガウス・ルジャンドルの数値積分を使いたいけれど、次数を2にして、分点、すなわちサンプリングする点を±0.5だけにしたい、という注文です。たぶん、±0.5における被積分関数f(x)の値なら簡単に求められる、というのでしょう。
 もちろん、適当な一次式ではない関数g(たとえば3次関数)を用いて
x=g(t)
という変数変換でx=±0.5をt=±0.57.... に移し同時にx=±1をt=±1に移す、ということ自体は簡単です。するとf(g(t))と
dx/dt = g'(t)
の積を被積分関数としてt=-1~1について積分することになります。この場合、被積分関数 f(g(t)) g'(t) がtの2次多項式で近似できるんでないと、2次のガウス・ルジャンドル法を使って精度が出るという保証はありません。
 高精度の数値積分をやりたいと仰っている割に、f(x)が高々低次の多項式で近似してしまえるんだったら、何もガウス・ルジャンドル法に拘る必要はないんで、例えばニュートン・コーツ型の数値積分、すなわち分点を等間隔に取る方法でも十分じゃないの?と思うんですが、どうなんでしょうね。

 或いは分点の数をもっと増やして良い、というのだったら、代わりに例えば-1~-0.5, -0.5~0.5, 0.5~1の3つの区間に分けてそれぞれ積分するのでも良い。被積分関数の傾きが急な部分でサンプリングを細かくしてやるというのも精度が出ますし、その代わりに適当な変数変換をして等間隔サンプリングしたり、ガウス・ルジャンドル法を使ったり…いろんな処方が考えられます。

 ですから、「±0.5」と限定なさる理由をもう少し明確に補足して戴くか、具体的に被積分関数をupして戴かないと、ろくな回答にならないと思います。

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の...続きを読む

Qx^x^x^x^x^x^・・・・・^x  の一般的な表し方

タイトル通りになってしまいますが、

x^x^x^x^x^x^・・・・・・^x (xはn個ある)

を一般的に表すことができる式というのはあるものなのでしょうか?

grapesで
y=x
y=x^x
y=x^x^x
y=x^x^x^x
 ・
 ・
 ・

のグラフを描いてみましたところ、どうやらnが偶数か奇数かによって2種類のグラフに近づいているように見えたのです。どなたか一般的な記述の仕方をご存知の方、宜しくお願いしますm(_ _)m

Aベストアンサー

x^x^xはx^(x^x)と表すべきです。同様にx^x^x^xではなく、x^(x^(x^x))です。
これは(x^x)^xとx^(x^x)が等しくないから区別する必要があるわけです。
たとえば(3^3)^3=729なのに対し、3^(3^3)=19683です。
一般に後者の方が圧倒的に大きくなります。

さて、話をx^(x^(x^(…)))に戻しましょう。
これは定義域を[0,1]に限れば、確かにおっしゃるとおり偶数と奇数で
関数の形状が分かれます。これはx^x→1(x→0)が関係しています。
x^(x^x)は不定形の極限ではなく、単に0^1=0に収束します。
偶数個のときは不定形の極限が現れるわけです。
数学的帰納法とたとえばlogを取って極限計算をされてみたらよいでしょう。

さて問題になっている、x^(x^x)などの表記ですが、
これにはクヌースのタワー表記(1976)というものが知られています。
たとえば
x^(x^x)=x↑↑3
x^(x^(x^(x^(x^x))))=x↑↑6
などと表示します。参考URL(wiki)などをごらんください。
wikiによるとx^^3や、x^^6などとも表示するようです。

参考URL:http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%8C%E3%83%BC%E3%82%B9%E3%81%AE%E7%9F%A2%E5%8D%B0%E8%A1%A8%E8%A8%98

x^x^xはx^(x^x)と表すべきです。同様にx^x^x^xではなく、x^(x^(x^x))です。
これは(x^x)^xとx^(x^x)が等しくないから区別する必要があるわけです。
たとえば(3^3)^3=729なのに対し、3^(3^3)=19683です。
一般に後者の方が圧倒的に大きくなります。

さて、話をx^(x^(x^(…)))に戻しましょう。
これは定義域を[0,1]に限れば、確かにおっしゃるとおり偶数と奇数で
関数の形状が分かれます。これはx^x→1(x→0)が関係しています。
x^(x^x)は不定形の極限ではなく、単に0^1=0に収束します。
偶数個のときは不定...続きを読む

Q数学II「微分・積分」で面積を求める公式

6分の1の公式や3分の1の公式みたいに、積分を利用せずに面積を求められる公式って他にありませんか?

Aベストアンサー

(1)や(2)は高校数学のレベルで十分理解できると思います。
これらは,数値積分と呼ばれるもので,近似的に積分(求積)を実現しています。
参考になれば良いのですが。

(1)台形法
(2)シンプソン法
(3)ルンゲ・クッタ法

Qexp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

フィボナッチ数列F[n]は、
F[1]=1,F[2]=1,F[n+2]=F[n+1]+F[n]
で定義され、リュカ数列L[n]は、
L[1]=1,L[2]=3,L[n+2]=L[n+1]+L[n]
で定義されます。このとき、

exp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

が成り立つそうなのですが、どうしてなのですか?

右辺は、フィボナッチ数列の母関数と似ていてなんとか求められるのですが、左辺をどうして求めていいかわかりません。

なお、式は
http://mathworld.wolfram.com/FibonacciNumber.html
の(68)を参照しました。

Aベストアンサー

↓ここに証明がありますね。
http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf
(2.7 A surprising sum を見てください。)

参考URL:http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf

Q積分の公式の導出について

積分の公式の導出について

∫{(ax+b)^n}dxの積分公式は、(((ax+b)^n+1)/a(n+1))
なのですが、どのようにすれば導出できるのでしょうか?

ご回答よろしくお願い致します。

Aベストアンサー

ax+b=s とおくと ds/dx=a つまり dx=ds/a
従って 与式=∫s^n/a ds
あとは積分してsを元に戻すだけです。

Qx^2 * exp(x^2) dxの不定積分

この積分の方法が分かりません。
どうしたら良いでしょうか?

Aベストアンサー

多分、初等関数で表すことはできないと思います。
部分積分で次数を減らしてみましょう。

∫x^2*exp(x^2)dx=∫(x/2)*(2x*exp(x^2))dx
=(x/2)*exp(x^2)-∫(1/2)exp(x^2)dx (2x*exp(x^2)=(exp(x^2))')

となりますが、∫exp(x^2)dxは初等関数で表すことができないと記憶しています。


おすすめ情報