No.3ベストアンサー
- 回答日時:
ある関数fをFourier変換したものをFとし,それをFourier逆変換で戻すと,元の関数fに戻る必要があります.すなわち
F(k)=(1/2π)∫[x=-∞~∞]f(x)e^(-ikx)dx (Fourier変換)---(1)
f(x')=∫[k=-∞~∞]F(k)e^(ikx')dk (Fourier逆変換)---(2)
としたとき,(1)を(2)の右辺に代入した際,右辺はf(x')に一致しなければなりません.
そこで実際代入してみると,
(2)の右辺
=∫[k=-∞~∞]((1/2π)∫[x=-∞~∞]f(x)e^(-ikx)dx)e^(ikx')dk
=∫[x=-∞~∞]f(x)((1/2π)∫[k=-∞,∞]e^(-ik(x-x'))dk)dx
となります.これがf(x')に一致するということなので,δ関数の定義より
f(x')=∫[x=-∞~∞]f(x)δ(x-x')dx
であることに注目すれば
δ(x-x')=(1/2π)∫[k=-∞,∞]e^(-ik(x-x'))dk
であるとわかります.
返事が遅れてしまいすみませんでした。
確かにNo.3さんの証明だと簡単に説明できますね。
また機会があればよろしくお願いします。
No.2
- 回答日時:
デルタ関数δ(x)の定義は、x=0のときδ(x)=無限大、それ以外はδ(x)=0です。
まず形式的に付いてる2πは、三角関数を一周期に亘って時間積分する際に出る係数です。
次に、e^(-ωt)=cos(ωt)-jsin(ωt)と分けます。
ω=0でない場合は、sinもcosも一周期時間の範囲を積分すると0です。-∞~∞はそれを無限回繰り返すからやはり=0です。
ω=0のときはcos(0)=1、sin(0)=0ですから-∞~∞の積分をするとcosの項によって無限大になります。
つまりωが0でないなら結果は0、ωが0なら結果は無限大、これはδ関数の定義と同じなので、δ関数と等しい。
無限大に2πを掛けるのはフーリエ変換の式との形式合わせです。
返事が遅れてしまいすみませんでした。
説明されているように、オイラーの公式を用いて計算する方法は思いつきませんでした。
おかげで理解を深めることができました。ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学の質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dt 1 2023/07/29 01:08
- 工学 周波数fで表現したフーリエ変換の対称性に関する質問です。 1 2022/09/14 12:27
- 物理学 フーリエ変換の振幅について 1 2022/09/04 08:56
- 数学 離散フーリエ逆変換が周波数分割数をNにできる理由について 4 2022/09/18 12:56
- 数学 フーリエ変換、逆変換の「2π」の扱いについて 3 2022/10/07 08:31
- 数学 f(x)=2x+∮(0~1)(x+t)f(t)dt を満たす関数f(x)を求めよ。 3 2022/07/05 22:54
- 数学 f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求めよという問題が分からないので 3 2022/12/03 14:39
- 数学 f(x)=1 (0<x<L) f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求 1 2022/12/01 17:05
- 数学 x=r・cosθの2回微分 θ=ωtとすると? 5 2022/05/10 23:53
- 数学 初歩がわからない 分数の計算 1 2022/03/26 11:47
このQ&Aを見た人はこんなQ&Aも見ています
-
好きなおでんの具材ドラフト会議しましょう
肌寒くなってきて、温かい食べ物がおいしい季節になってきましたね。 みなさんはおでんの具材でひとつ選ぶなら何にしますか? 1番好きなおでんの具材を教えてください。
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
「覚え間違い」を教えてください!
私はかなり長いこと「大団円」ということばを、たくさんの団員が祝ってくれるイメージで「大円団」だと間違えて覚えていました。
-
【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
【お題】 ・買ったばかりの自転車を分解してひと言
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
exp(ikx)の積分
数学
-
eの積分について
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
e^(x^2)の積分に関して
-
積分の数式を声に出して読むと...
-
0の積分
-
e^(-x^2)の積分
-
置換積分と部分積分の使い分け...
-
exp(ikx)の積分
-
高校の数学で積分できない関数
-
e^(ax)の微分と積分
-
積分においてxはtに無関係だか...
-
積分の問題です ∫sinxcosxdxを...
-
y=1/√xの積分を教えてください
-
積分の問題
-
(x^3/√(x^2+1))の不定積分
-
定積分=0という場合、積分され...
-
積分のパソコン上のの表し方...
-
cosx/xの積分の値について
-
∬1/√(x^2+y^2)dxdy を求めよ。
-
定積分
-
1/cosxの積分
-
積分計算のdtとdxの違いがわか...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報