出産前後の痔にはご注意!

Xが空間でxがXの点で、Xの部分集合Uがxを含む開集合であるとき
Uはxの開近傍であるという。

と本に書かれてあるのですが、
開近傍とは一体どういうことなのでしょうか?
Uという集合が開集合であり、空間Xと比べて点x近傍にある集合である
という意味でこういう名前がついているのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

「開近傍」の意味は、


貴方がそこに書いている通りです。
数学用語の「意味」は定義が全てで、
その他に何かある訳ではありません。

「近傍」の字面から
「近さ」を連想するのも筋違い。
全空間 X は、任意の点の近傍のひとつです。
一番遠い、というか外側の集合も、
近傍になっているのです。

どうしても「意味」をコジツケたければ、
近傍は「近傍系」の一員であり、
「近傍系」は「近くまで続く集合の系列」
と、考えてみては?
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む

Q弧長パラメータとは何?

弧長パラメータは、長さ関数の逆関数によってパラメータ変換することによって得られるそうですが、何故そうやって求められるのでしょうか?そもそも、弧長パラメータの概念が今一つ分からないです。

例えば、
x(t)=(asint,acost,bt)
の曲線があるとして、
これの長さ関数は
x'(t)=(acost,-bsint,0)より
int(0,t)||(x'(t))||dt
=int(0,t)sqrt(a^2+b^2)dt
=sqrt(a^2+b^2)t
より、t=x/sqrt(a^2+b^2)
ですから、x(t)の弧長パラメータ表示関数は、
x(s)=(asin(a/sqrt(a^2+b^2)),acos(s/sqrt(a^2+b^2)),
bs/sqrt(a^2+b^2))
となると解釈して宜しいのでしょうか?

分かる方がいましたら、回答宜しくお願いします。

Aベストアンサー

#1のKENZOUです。パソコンの調子がおかしくなり(←今もおかしいので古いのを使っている),レスが遅れました。

>長さ関数=弧長パラメータということでしょうか?
その通りと思います。
物理的イメージから迫って見ましょう。
 r(t)=(x(t),y(t),z(t))
を時間tのときの点の位置を表す位置ベクトルとしますと,それを時間で微分したdr/dtは点の速度ベクトルとなります。
 dr/dt=(dx/dt,dy/dt,dz/dt)
この点の軌跡の長さはt=0からt=tまでの間に動いた距離ですからそれをsとすると
 s=∫[0,t]|dr/dt|dt
つまりsはtの関数となります(←当たり前か)。時間tと共に距離sは(途中で止まることが無ければ)単純に増加していきますので,sはtの単調増加関数ということになり,tをsの関数として書くことが可能ですね。この結果
 r=r(t)=r(s)=r(x(s),y(s),z(s))
と表すことができます。つまり曲線rをパラメータsを使って表すことになりますので,このsを孤長パラメータと呼んでいます。

>tの関数をsの関数に変換したといったことになるのでしょうか?
仰る通りと思います。

#1のKENZOUです。パソコンの調子がおかしくなり(←今もおかしいので古いのを使っている),レスが遅れました。

>長さ関数=弧長パラメータということでしょうか?
その通りと思います。
物理的イメージから迫って見ましょう。
 r(t)=(x(t),y(t),z(t))
を時間tのときの点の位置を表す位置ベクトルとしますと,それを時間で微分したdr/dtは点の速度ベクトルとなります。
 dr/dt=(dx/dt,dy/dt,dz/dt)
この点の軌跡の長さはt=0からt=tまでの間に動いた距離ですからそれをsとすると
 s=∫[0,t]...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q有界閉区間であることの証明

閲覧ありがとうございます。
以下の問題が分かりません。

http://i.imgur.com/NCS1q3U.jpg

恥ずかしながら、どのように解けばいいか、解答の方針すら立たない状況です。
特に、iに関しては証明するまでもなく当たり前ではないか?と思ってしまいます。

分かる方、どうか教えていただけないでしょうか。解説の方、よろしくお願いいたします。

Aベストアンサー

定義域の端点が、値域の最大・最小に対応したりする場合は、イメージしやすいし、そうでなくてもグラフを描けば、正しいだろうという検討はつきますね。ただ、証明は別ですから、、。

定理をいくつか使ってよいなら、次のステップですぐ証明は出ます:
有界閉区間Iはコンパクトである。
コンパクト集合から実数の集合への連続関数は、最大値a、最小値bをもつ。
a=bなら、特殊な有界閉区間。そうでないとすると、
aとbとの間の任意のcに対して、中間値の定理より、f(x)=cとなるIの元xが存在する。
よって、f(I)=[a,b]となるとか、、、。


使える定理からあまりすぐ証明できると練習にならないので、例えばR^nの有界閉区間I(各座標軸で有界閉区間の直積集合)上の連続実数値関数fの像f(I)は有界閉区間になることを証明せよ、、、くらいがいいかもです。もっと一般的に定義域がコンパクトで連結の時、、、くらいにしても(結論は正しいですか?)、位相の練習問題ならいいかもです。


人気Q&Aランキング

おすすめ情報