No.8ベストアンサー
- 回答日時:
補足で書かれている、
>補足なんですが・・・この考え方はおかしいのでしょうか?
>それは例えばAクンが1組になる可能性が4分の1、
>Bクンが1組になる可能性が4分の1、
>よって16分の1という考え方です。
>あと例えばAクンが1組になる可能性は4分の1ですよね?
>これが4分の1なのに2人が同じクラスになる確率も
>4分の1なのですか?
についてですが、
「Aクンが1組、Bクンも1組になる確率」は16分の1ですが、
「Aクンが2組、Bクンも2組になる確率」も16分の1、「Aクンが3組、Bクンも3組になる確率」も16分の1、「Aクンが4組、Bクンも4組になる確率」も16分の1ですよね。
2人が同じクラスになりさえすればいいのですから、1組でも2組でも3組でも4組でもOKですね。
ということは、2人が同じクラスになる確率は、それぞれの確率を足して、
1/16+1/16+1/16+1/16=1/4
ということになります。
ただ、今の問題は、「150人の4クラス」で、150は4で割り切れないので、それぞれの人が4クラスのそれぞれに配分される確率は同一ではない(同じ確からしさではない)ため、1/4から微妙にずれると思います。
つまり、厳密には、No.3やNo.5の方のように、各クラスへの人数の配分を自分で仮定する必要があると思います。
No.11
- 回答日時:
No.8のspringsideです。
解答を訂正します。
私が書いたように、きっちりと1/4とか1/16ではないですね。
さらに、この問題の場合、各クラスに均等に配分されない(150は4で割り切れないから)ので、もっとややこしくなります。
各クラスに均等に配分されるとすれば(人数を4nとします)、この問題は以下のように言い換えられます。
「4n本のクジがあり、各クジには、1、2、3、4という数字がそれぞれ同数(n個)書かれている。このクジを4n人の人が順番に引くとき、その中のAさんとBさんが同じ数字が書かれたものを引く確率を求めよ。」
解答:クジ引きには、引く順番は関係ないから、Aさんが1番目に、Bさんが2番目に引くと考えて良い。すると、Aさん、Bさんがともに1を引く確率は、
(n/4n)×{(n-1)/(4n-1)} (←Aさんが1を引く確率×Bさんが1を引く確率)
=(1/4)×{(n-1)/(4n-1)}
2人が引くのが、1でも2でも3でも4でもよいので、この確率を4倍して、求める確率は、(n-1)/(4n-1)
皆様、詳しい回答ありがとうございました。
簡単に言えば4分の1ということですね。
ありがとうございました。
難しいことを言われましても私にはわかりませんでした(苦笑
しかし、皆様、本当にありがとうございました。
No.10
- 回答日時:
簡単な例で
a,b,c,dの4人を2つのクラスに分けることを考えてください。
#1さんや#2さんの考え方によれば1/2になってしまいそうですが間違いです。
aさんは他のだれと一緒になるか3通りあります。
だからa,bさんが一緒になる確率は1/3です。
このことから補足に書いているやりかたの
1/2*1/2=1/4というのも間違いということが分かります。
このやり方はクラス人数が同じでなくても(0人のクラスがあっても)良い場合の
やり方です。
で最初の質問の解答は面倒なのでやめます。
150人でなく148人で考えてみたらどうですか。(クラス人数が同じの場合)
No.9
- 回答日時:
クラスの人数に上限がなければ、1/4となりますが、実際は上限があるので、1/4からわずかにずれます。
1~4組の人数配分は#3さんのようにすると、
A君とB君が同じクラスになる確率は
5476/22350≒0.24501
1/4よりわずかに小さくなります。
#4さんへの補足に関して
「A君とB君が1組で同じクラス」になる確率は約1/16です。
「A君とB君が同じクラス」になる確率だから、別に1組で同じクラスにならなくてもいいのです。2組でも、3組でも、4組でもいいのです。2組で同じクラスになる確率も同様に約1/16。3組でも約1/16。4組でも約1/16。
(約1/16)*(4クラス)=約1/4
となります。
数学の問題でないでしょうから、ここまで厳密にやる必要はなく、1/4よりわずかに小さい、と考えるのが妥当では?
No.7
- 回答日時:
久しぶりにここをのぞいてみました。
少しきになったので書き込んでみますね。
私はこの確率は4分の1ではないと考えます。
A君が1組になることとB君が1組になることは独立ではないからです。
A君が1組になったとするとA君以外の人が1組に入れる枠が一つ減るのです。
これは一クラスの定員が大きいときはほぼ無視できますが、
定員が少ない場合は結構大きな影響があります。
極端な場合定員が1名クラスだと同じクラスになる確率は0です(^^;
定員が2名だとA君を除いた枠にB君が入れるかどうか考えればよいので、
7分の1となります。
これを拡張して考えていくと一般には次のようになります。
クラスの定員がすべて同数でないとややこしいので、
単純にするため4クラスの合計人数は4の倍数(4n)人とすると、
AくんとBくんが同じクラスになる確率は
(n-1)/(4n-1) (nは自然数)となります。
ご質問の150人ですが、
単純のため148人(n=37)として計算すると
求める確立は 37/147=0.244897959....
となって、わずかに(0.5%ほど)25%を下回ることになります。
もしクラスの人数が均等ではない場合が必要でしたら、
補足して下さい。
No.6
- 回答日時:
もっとわかりやすい例がありました。
各組1名、各組2名で考えてみて下さい。
各組1名だと、同じクラスになる確率はゼロですね。
クラスの人数は非常に重要です。
各組2名だと、一人目は何処に行っても良いのですが、
二人目は1/9の確率でしか同じクラスには行けません。
もちろん、各組無限大だったら、
確率は1/4です。
No.5
- 回答日時:
24.50111%、1/4よりも少なくなります。
まず、3番さんの回答との違いを書きますと、
B君のクラスを決めるときは、
(A君のクラスが決まっているので、分母分子から外れます)
149人から決まります。
(38/150*37/149)*2+
(37/150*36/149)*2
ですね。
次に2番さんとの回答の違いを書きますと、
はじめにA君はどのクラスに行っても良いのですが、
B君が同じクラスに行くときは、一人そのクラスの定員が
減っているのと同じ現象が起きるという事になるのです。
これは、各組10人で考えるとわかりやすいです。
A君のクラスを決めてしまうと、
他の組の定員は10人なのに、A君の居るクラスだけが9人の定員になります。
最後に、1番さんとの回答の違いを書きますと、
機会は均等ではないと言う事になります。
理由は2番さんについて書いたのと同じで、
A君が○組、という仮定を置いた時点で、
機会は均等にはならなくなります。
微妙に他のクラスに行きやすくなるのです。
ちなみに、こういう場合の求め方としては、
私は3番さんの計算法が好きです。
No.4
- 回答日時:
yoppii です。
A君が1組になる事象とB君が1組になる事象は独立ではないのかな。
だとすると私の考えは明らかに間違ってますが。
fushigichan さんや superhug さんの回答が、
各クラスの人数配分が違う場合にも適用できるのか、
私のような一般人には納得出来なくて。
この回答への補足
3人の方々、ご回答ありがとうございます。
補足なんですが・・・この考え方はおかしいのでしょうか?
それは例えばAクンが1組になる可能性が4分の1、
Bクンが1組になる可能性が4分の1、
よって16分の1という考え方です。
あと例えばAクンが1組になる可能性は4分の1ですよね?
これが4分の1なのに2人が同じクラスになる確率も
4分の1なのですか?
長くなってすいません。
No.3
- 回答日時:
各クラスの人数配分を、
1組:38人、2組:38人、3組:37人、4組:37人
としましょう。
A君、B君がともに1組になる確率は、
(38/150)*(38/150)
ともに2組になる確率は、
(38/150)*(38/150)
ともに3組になる確率は、
(37/150)*(37/150)
ともに4組になる確率は、
(37/150)*(37/150)
以上を合計すれば、A君、B君が同じクラスになる確率は、
5626/22500
となって、1/4 よりわずかに大きくなると思うのですが。
どこが間違ってるんでしょうか?
No.2
- 回答日時:
確立は4分の1です。
A君 B君
1組・・・同じクラス
1組 2組
3組
4組
A君が1組のとき、B君がどこのクラスになるかは4通り
同じクラスの確立は4分の1
4クラスなので16分の4=4分の1
4クラスと決められているんですから、人数は関係ありません。
仮に、1学年4万人でも、1クラス1万人になり、1万人は同じクラスメイトなのですから。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
みんなの【マイ・ベスト積読2024】を教えてください。
積読、ついついしちゃいませんか?そこでみなさんの 「2024年に買ったベスト積読」を聞きたいです。
-
コーピングについて教えてください
皆さんはストレスを感じたとき、どのような方法や手段、テクニックで対処していますか?
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
クラス替えで同じクラスになる確率を教えてください。 私の学校には4クラスあって、どのクラスも33人~
友達・仲間
-
3年間同じクラスになる確率
統計学
-
同じクラスにならない確率を教えて下さい。
宇宙科学・天文学・天気
-
-
4
7クラスあって同じクラスになる確率っていくつですか? 数学できなくて…考えたんですけど分からないんで
学校
-
5
数学の計算問題。 3年間同じクラスになる人の確率を求めてください! 僕の学年は約300人で人クラス3
教育学
-
6
世界に人は約75億人いますよね その中で同じ年に生まれ、同じ国、同じ市、同じ学校、同じクラスになる確
地理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・ことしの初夢、何だった?
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
±4σに入る確率について教えてく...
-
8頭身あって10人に1人くらいの...
-
標準正規分布の確率を求める時...
-
1から13までの数字が1つずつ書...
-
ピリオドグラムって…
-
大富豪においての革命の確率を...
-
試行回数が高いほうが確率はい...
-
可能性は「高い」?「大きい」?
-
誤差関数について
-
卵が2個連続双子の確率は?
-
ベイズの定理の問題なのですが...
-
確率が重複する場合の計算方法
-
4人のうち3人が勝ち1人が負けに...
-
Cp値
-
スマホゲームをしていて気にな...
-
モンテカルロとノンパラメトリ...
-
相関係数についてくるP値とは何...
-
2人でじゃんけんをして1人の人...
-
負の二項分布の名前の由来
-
わからないので助けてください...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
±4σに入る確率について教えてく...
-
確率が重複する場合の計算方法
-
4人がじゃんけんしてあいこにな...
-
8頭身あって10人に1人くらいの...
-
標準正規分布の確率を求める時...
-
確率密度関数の縦軸Y
-
ピリオドグラムって…
-
どう確率を出したらいいか教え...
-
同じクラスになる確率
-
条件付き確率で、Pa(B)とP(A∩B)...
-
相関係数についてくるP値とは何...
-
丁半バクチの確率
-
数Aの質問です。
-
負の二項分布の名前の由来
-
卵が2個連続双子の確率は?
-
確率の問題です。 スペード、ハ...
-
相関係数にでる P<0.001のPは...
-
サイコロを9回振って3回連続で...
-
可能性は「高い」?「大きい」?
-
1から13までの数字が1つずつ書...
おすすめ情報