ちょっと変わったマニアな作品が集結

実際のopアンプを使用した非反転増幅器の出力インピーダンスはどうやって導出すれば良いのでしょうか?
http://oshiete1.goo.ne.jp/qa4654272.html
こちらの質問を参考に出力インピーダンスを算出してみたところ、一向にテキストと同じ式になりません。
テキストには、出力インピーダンス:
       Zout=(1+Rf/R1)Zo/Avo
       Zo:OPアンプ単体の出力インピーダンス
       Rf:フィードバック側の抵抗,R1:反転入力側の抵抗
       Avo:電圧利得
ご指導よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

「こちらの質問」のANo.2です。


「こちらの質問」は入力インピーダンスの話で、出力インピーダンスではありません。添付図に導出方法を途中まで書きました。Zout = (1+Rf/R1)*Zo/Avo というのは近似です。Avo がどういう場合にそうなるか考えてみてください(Avoは非常に大きな数値です)。
「実際の非反転増幅器の出力インピーダンスの」の回答画像1
    • good
    • 1
この回答へのお礼

ご丁寧な解答ありがとうございます。
とても分かりやすく、助かりました。
入力インピーダンスの解法を参考に出力の方も算出しようとしたのですが、回路方程式が間違っていたようです。
Zoは理想が0(実際の値が数百Ω以下)、
RfとR1は値に大きな差がないので、Rf/R1=~2,30?←ここが曖昧です、、
Avoは理想が∞(実際の値が直流域で1万倍以上)であり、上記の2つと比べて、とても大きい値であるとみて
Avo >> 1+(Rf+Zo)/R1 という関係があり、テキストの近似式になるということでよろしいでしょうか?

あと、最後のZoutの式のVout、ioutの前にある文字はdですよね?
d/diout(Vout)ということでしょうか?

お礼日時:2009/11/23 18:15

補足すると;


帰還率:β=R1/(R1+Rf)
として、
ループゲイン(還送比とも言う):Avoβ
帰還量(還送差とも言う):1+Avoβ
だから、
出力インピーダンスZoutは
Zout≒Zo/(1+Avoβ)
と帰還量分の1になる。
入力インピーダンスZinが
Zin≒Zi(1+Avoβ)
と帰還量倍されるのと対称的である。
とゆうわけですから、負帰還の効果は還送差(1+Avoβ)で考えるようにすると後々楽です。
    • good
    • 0
この回答へのお礼

上記の補足については少し理解出来てないところがありますが、
授業でこの範囲が全て終ってからまた考えてみたいと思います。

これ以上ないという位分かり易い解説ありがとうございました。
これでまた授業での理解度が増した気がします。
本当に感謝しています。ありがとうございました!

お礼日時:2009/11/25 03:20

>Avo >> 1+(Rf+Zo)/R1 という関係があり、テキストの近似式になるということでよろしいでしょうか?


はい、そういうことです。

>d/diout(Vout)ということでしょうか?
(dVout)/(dIout) は Vout を Iout で微分するという意味です。Iout を変化させたときの Vout の変化率です。

以下のように、理想電圧源 E に出力抵抗 Zo がついた電源の出力端子に外部から電流 Iout を加えたときの出力電圧 Vout は
       ← Iout
 ┌─ Zo ── Vout
 ┷
 ■ E
 └────- 0V
   Vout = E + Zo*Iout
となります。E は Iout を変えても変化しませんから、Iout を変化させたときの Vout の変化率
   (dVout)/(dIout) = Zo
が出力抵抗になります。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q実際の非反転増幅器の入力インピーダンスの導出過程を教えてください

今まで理想opアンプを勉強してきたので入力インピーダンス=無限で考えてきたのですが、実際のopアンプを使用した非反転増幅器の入力インピーダンスはどうやって導出すれば良いのでしょうか?
資料には、

非反転増幅回路の入力インピーダンス=Zin*(1+R1*Av/(R1+R2))
Zin:opアンプの入力インピーダンス
Av:opアンプの電圧利得
R1:入力抵抗
R2:フィードバック抵抗

とだけ書いてあり、導出過程は省略されています。
分かる方がいましたら教えていただけませんか?

Aベストアンサー

正しい答えは
   入力インピーダンス = R1//R2 + Zin*{ 1 + R1*Av/( R1 + R2 ) } --- (a)
になります。R1//R2 というのは、R1 と R2 の合成並列抵抗で R1*R2/( R1 + R2 ) の意味です。anachrockt さんのコメントの通り、「正確にはR1とR2の並列抵抗分が足され」ます。しかし、普通は
   R1//R2 << Zin*{ 1 + R1*Av/( R1 + R2 ) }
なので、isthisapenさんの式
   入力インピーダンス ≒ Zin*{ 1 + R1*Av/( R1 + R2 ) }
で近似できます。式(a)の計算方法は以下の通りです。

下図のように、反転入力端子(-)と非反転入力端子(+)間の入力インピーダンス(差動インピーダンス)を Zin とします。

  i1 →  ┃  \
Vin ───╂┐(+) \
       ┃Zin     >─┬─ Vout
  V1 →┌╂┘(-) /   │
   i1↓│┃    /    │
      ├─── R2 ──-┘
      │    ← i2
     R1
      │ ↓ i1 + i2
GND ─-┴──────────

非反転入力端子(+)の電圧を Vin、反転入力端子(-)の電圧を V1、出力電圧を Vout とし、電流を上図のように定めると、各素子に流れる電流は
   Zinに流れる電流   i1 = ( Vin - V1 )/Zin --- (1)
   R2に流れる電流   i2 = ( Vout - V1 )/R2 --- (2)
   R1に流れる電流   i1 + i2 = V1/R1 --- (3)
一方、オペアンプの出力は、入力端子間の電圧を Av 倍したものなので
   出力電圧       Vout = Av*( Vin - V1 ) --- (4)
となります。式(1)~(4)を i1 について解くと(手計算は結構大変です)、
   i1 = ( R1 + R2 )*Vin/[ R1*R2 + Zin*{ ( 1 + Av )*R1 + R2 } ]
したがって、Vin からオペアンプ内部を見たときのインピーダンスは
   入力インピーダンス = Vin/i1
               = [ R1*R2 + Zin*{ ( 1 + Av )*R1 + R2 } ]/( R1 + R2 )
               = R1*R2/( R1 + R2 ) + Zin*{ 1 + R1*Av/( R1 + R2 ) }
               = R1//R2 + Zin*{ 1 + R1*Av/( R1 + R2 ) } --- (a)
となります。

正しい答えは
   入力インピーダンス = R1//R2 + Zin*{ 1 + R1*Av/( R1 + R2 ) } --- (a)
になります。R1//R2 というのは、R1 と R2 の合成並列抵抗で R1*R2/( R1 + R2 ) の意味です。anachrockt さんのコメントの通り、「正確にはR1とR2の並列抵抗分が足され」ます。しかし、普通は
   R1//R2 << Zin*{ 1 + R1*Av/( R1 + R2 ) }
なので、isthisapenさんの式
   入力インピーダンス ≒ Zin*{ 1 + R1*Av/( R1 + R2 ) }
で近似できます。式(a)の計算方法は以下の通りです。

下図のように、反転入力...続きを読む

Q閉ループゲイン 開ループゲイン

オペアンプの閉ループゲイン、開ループゲインとはそもそも何なのでしょうか?
根本的なとこがわかりません。
どなたかよろしくお願いします。

Aベストアンサー

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60dB)のフィドバックをかけたとすると、利得は20dB(40dB)になりますが、利得一定の周波数幅がうんと広くなることにお気づきでしょうか?
これが閉ループゲインです。

一般に、オペアンプの開ループゲインは100dB以上ありますが、これを開ループで使うことは滅多にありません。
周波数特性が問題にならないコンパレータのときくらいのものです。

参考URL:http://my1.interlink.or.jp/~md0858/series4/densi0613.html

[図6.1-41]を見てください。
これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi0613.html

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60...続きを読む

Q反転増幅器の周波数特性

入力電圧V1=300mV、R1=10kΩ、Rf=100kΩの反転増幅回路で周波数を100Hzから200kHzまで徐々に変化させていくと、10kHz以降から位相差が生じて、出力電圧、利得が減少しはじめました。どうしてこんなことが起きるのでしょうか?その根拠がわかりません・・・
そしてなぜ10kHzから生じたのかという根拠もわかりません。
どなたかご回答の程よろしくお願いします。

Aベストアンサー

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増幅回路における周波数特性が右下がりになる理由を理論的に説明したいのですが、回路にコンデンサが使われていないので、カットオフ周波数が求められなくて困っています。オペアンプは751です。右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね? http://okwave.jp/qa3048059.html

非反転増幅、反転増幅の回路実験を行ったのですが、1kHzや100kHz を入力すると、約10倍の増幅が確認できたのに対し、1MHzを入力した場合、約1.2倍となりほとんど増幅が確認できませんでした。 これはなぜでしょうか http://okwave.jp/qa3055112.html

反転増幅回路と非反転増幅回路に周波数特性に違いがあるらしいのですがそれがどういった違いなのかわかりません。わかる方いらっしゃいましたら教えてください。 http://okwave.jp/qa4078817.html

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増...続きを読む

Qオペアンプと負荷抵抗について

演算増幅器を用いた演算回路の実験を行っています。

反転増幅回路や非反転増幅回路、そして電圧フォロワの回路で、出力電圧(Vout)を測定する場合に、負荷抵抗を接続して測定しています。この負荷抵抗の値は51kΩと100Ωの2種類で測定をしています。

なぜ、このように負荷抵抗を接続して出力電圧を測定しなければいけないのでしょうか。(なぜ負荷抵抗が必要なのか。)
そして、負荷抵抗が51kΩの場合は、理論値に近い測定結果が得られるのですが、100Ωの場合では理論値とは異なる値になってしまいます。この理由を教えてください。
オペアンプはOP07を使用しています。

Aベストアンサー

1. 何故51kΩか?
 今回の実験の目的は、「負荷抵抗が大きいときと小さいときで、出力振幅が
 どう変わるか?」を考察するのが目的なのではないかと推察します。
 OP07は下記データシートにもありますように、負荷抵抗1kΩ以上で使用される
 オペアンプです。
 (2ページ表中最下段、[output voltage swing]参照))
http://pdfserv.maxim-ic.com/en/ds/OP07.pdf

 10kΩ以上では、出力振幅はほぼ一定になるので、100kΩでも1MΩでも
 同じ結果が出るはずです。→理論値に合致する
 「開放」でも構わないと思いますが、
  (1)現実的な負荷に近い、
  (2)並列に入る測定器のインピーダンス(1MΩ~)の影響を考えなくてよい、
 というところで、51kΩを選んだのではないでしょうか。 
 開放でも、51kΩでも結果が変わらないので、こうしたのだと思います。
 (わたしはOP07Aが負荷開放でも、正常動作することを確認しています)

2. 100Ω負荷
 これはOP07にとって、むちゃくちゃ厳しい負荷です。

 上記データシートに記載ありますように、電源電圧±15Vのとき、
   負荷抵抗10kΩで出力振幅 13.0V→2.0Vのドロップ
     〃 2kΩで出力振幅 12.8V→2.2Vのドロップ
     〃 1kΩで出力振幅 12.0V→3Vのドロップ・・・となっています。
 2kΩから1kΩになったとき、電圧降下が大幅に増加することに注目ください。

 極めて大ざっぱな計算ですが、
   (1)±12.8Vは9.08Vrms出力が可能、→2kΩ負荷では4.54mArms流れる。
   (2)±12.0Vは8.51Vrms出力可能、→1kΩ負荷では8.51mArms流れる。
   従って、 8.51-4.54=3.97mA の増加で 2.2-3.0=-0.8V落ちたので、
   内部抵抗は0.8V/3.97mA=約200Ωと概算されます。
  (この計算はあくまでも、状況把握のための概算です)

 これに100Ω負荷がつながれば、出力電圧は1/3になります。
 電源電圧±15Vかけても、最大3.54Vrms(p-p10V)しか取り出せません。
 もし閉ループ利得を10にとったとすれば、入力電圧0.35Vまでは、入出力
 比例しますが、それ以上は飽和して出力電圧は上がらないでしょう。

 もう一つ、わたしはこのような苛酷な使い方で、ICが熱破壊されることを
 懸念したのですが、この方は(内部抵抗が高いお陰で)300mW程度のロスに
 止まり、OP07のPd=500mWですから、破壊にまでは至らないでしょう。
 内部抵抗の低いICなら一発です。
 しかし、かなり熱くなったことを体験されたはずです。
 (手で触れられないくらい・・・)

質問者さんから、状況のご開示がないので、かなり無理をして推測をいたしました。
(エーかげんな推測で、他の方々からのお叱りは覚悟の上です。(^_^;))

OP07の出力インピーダンスは60Ωであることが、データシートに記載されています。
どなたか、「出力インピーダンスがあるから、出力電圧が下がる」と書いて
おられますが、これは誤りです。
オペアンプはフィードバックをかけ、閉ループで使います。
出力インピーダンスはこの閉ループの中に入るので、・・・正常動作している
限りは・・・これによって、電圧が下がるということは考えません。

参考URL:http://pdfserv.maxim-ic.com/en/ds/OP07.pdf

1. 何故51kΩか?
 今回の実験の目的は、「負荷抵抗が大きいときと小さいときで、出力振幅が
 どう変わるか?」を考察するのが目的なのではないかと推察します。
 OP07は下記データシートにもありますように、負荷抵抗1kΩ以上で使用される
 オペアンプです。
 (2ページ表中最下段、[output voltage swing]参照))
http://pdfserv.maxim-ic.com/en/ds/OP07.pdf

 10kΩ以上では、出力振幅はほぼ一定になるので、100kΩでも1MΩでも
 同じ結果が出るはずです。→理論値に合致する
 「開放」でも構わ...続きを読む

QオペアンプのGB積

オペアンプの周波数特性にてGB積を求めたいのですが、求め方がよくわかりません。
GB積=電圧利得A(倍率)×周波数f(Hz)
で求めたのですが、それぞれがばらばらの値で、一定になりません。
色々調べるとGBは一定の値をとる。となっています。

良く分かりません。よろしくお願いします。

Aベストアンサー

「×GEIN」→「○GAIN」でスペルミスです.寝ぼけていてゴメン.
お詫びに図で説明を;
図はオーディオ用のuPC4570の電圧利得対周波数特性です.
http://www.necel.com/nesdis/image/G10528JJ8V0DS00.pdf
赤線は電圧利得 Av=80dB(1万倍)のときで周波数 f≒1.3kHzとなり,GB積≒1.3*10^07.
青線は電圧利得 Av=40dB(100倍)のときで周波数 f≒120kHzとなり,GB積≒1.2*10^07.
黒線は電圧利得 Av=0dB(1倍)のときで周波数 f≒7MHzとなり,GB積≒7*10^06.
Av=0dBの周波数ゼロクロス周波数と呼び,データシートに記載があります.

とゆうように,適当な電圧利得を選び,そこから水平に線を引いて電圧利得対周波数特性との交点を求め,その時の周波数と電圧利得を掛ければGB積が算出できます.

Q入力インピーダンスと出力インピーダンスについて

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信号を発信する側が、もともともっている内部抵抗です。
では、出力インピーダンスは、低いほど良い理由はなぜでしょうか?
マイクの出力インピーダンス(内部抵抗)が大きいと、自分自身でエネルギー(電圧)を使ってしまい、小さな音しか出せません。

私にはこの説明が理解できません。
入力インピーダンスの説明では、インピーダンスが大きいと、半導体が作動するのにエネルギーが少なくてすむ、と言っています。
ところが出力インピーダンスの説明では、インピーダンスが大きいと自分自身でエネルギーを使ってしまう、つまり多くのエネルギーが必要だと言っています。どう考えればいいのでしょうか。
何か基本的なことが理解できていない気がしてストレスがたまっています。

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信...続きを読む

Aベストアンサー

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力されるべきでしょう。
出力に100オームの負荷抵抗をつないだとき(電流がそれぞれ5mA、10mAの弱い電流)はもちろん、負荷抵抗が1オームのとき(電流はそれぞれ500mA、1Aの大量の消費電流)
でもでも負けず、出力端子には正確に0.5V、1Vが現れるべきです。
ところが現実には、出力回路内に妨害抵抗が生じます。これは、内蔵電池と出力端子との間に、例えば1オームが「直列に」入っている状態です。
このような出力端子に負荷抵抗をつないでみましょう。
電池が正確に0.5V(又は1V)を発生しており、出力端子の向こう側に100オームの負荷抵抗をつないであるなら、妨害抵抗によってわずかに電圧が低下し、
出力端子電圧は0.495V(又は0.99V)となって端子電圧としては誤差が発生し、さらに負荷抵抗が1オームになると、出力端子の電圧は0.25V(0.5V)で、大幅に不正確になってしまいますね。
「出力インピーダンス」とは、単純には「正確な電圧を発生させる電池と出力端子との間に直列に入っている妨害抵抗」ということができます。

・次に入力装置。テスター(電圧計)と考えましょう。
 理想的なアナログ電圧計を考えましょう。アナログ電圧計は、コイルに電流を流すと永久磁石との間で引力や反発力を生じて、ねじりバネをねじる強さとバランスさせることで
所定の位置まで針を動かすことはご存知でしょう。
安物はコイルの巻き数が少ないので、大きく針を振るためにはたくさんの電流を流す必要がありますが、高価なもの(高感度)は、コイルの巻き数が多く、わずかな電流でも大きく振れます(感度が高い)。この延長で、理想的なアナログ電圧計とは、電流をまったく流さなくても針が大きく振れるものです。
このとき、理想的な電圧計と、安物の電圧計の違いは、「並列に入った妨害抵抗」と考えることができます。
理想的な電圧計はまったく電流が流れないのに、安物は大量に流れる。仮に1V表示するのに安物は1A流す必要があるとすると、抵抗値は1オームとなり、これは、理想的な電圧計に並列に1オームの抵抗を入れたのと同じになります。
 1Vを出力しようとする出力装置が理想的(直列の妨害抵抗が入っていない)なら、どちらの電圧計をつなごうが端子電圧は同じ1Vで、電圧計としても1Vを表示しますが、出力装置の中に1オームの妨害抵抗が直列に入っている場合(出力インピーダンス1オーム)、電圧計が理想的ならなら直列の妨害抵抗があっても電圧降下が生じないので1Vを表示しますが、安物の電圧計(又は等価的につくった、理想的な電圧計に1オームの並列妨害抵抗をつないだもの)では、大きな電圧降下が生じて出力(=入力)端子電圧は0.5Vとなってしまいます。

・・・ということで、「出力インピーダンス」とは「出力に直列の妨害抵抗」と考えれば理解しやすく、「入力インピーダンス」とは「入力に並列の妨害抵抗」であり、どちらか一方が理想的(「直列の妨害が0オーム」か、「並列の妨害が無限大オーム」)ならば他方は理想的である必要はないが、現実には、どちらの妨害抵抗も存在する以上、「出力インピーダンスは小さく、入力インピーダンスは大きい」ほうが望ましいということになります。

(ご質問の中にある、”入力インピーダンスが大きいとエネルギーが少なくてすむ vs 出力インピーダンスが大きいとエネルギーがたくさん必要”の矛盾に関する疑問も、この「直列」と「並列」の関係ならご理解いただけるのではないでしょうか。)

なお、他の方から、「インピーダンスは必ずしも大きい(小さい)ほうが良いのではなく、マッチング(一致)が大切」という意見が出ていますが、これは次のように説明できます。
・「信号」は「情報」を送るので、基本的には”電圧だけが重要で、エネルギー(電力)は食わせたくない”。この前提では、上記の理想論のとおりであり、特に入力インピーダンスは無限大が良い。
・しかし、実際には、エネルギーが必要(アナログ電圧計でもバネをねじる仕事が必要)。したがって、どうしても一定量の電流を流す必要があり、入力インピーダンスを無限大にはできない。
このとき、ある法則により「出力インピーダンスと入力インピーダンスが一致したとき、入力側(受け取る側)に最大のエネルギーを与えることができる」という結果になっているので、両インピーダンスを一致させるのがいちばん良い
・さらに、別の法則から、高周波(高速で電圧が変動するので、長いケーブルにおいてはケーブルの場所によって電圧が異なる)においては、インピーダンスが一致しないと、「信号反射」等により波形が変形してしまうという結果になっている。

さてさて、すっかり長くなってしまいましたがいかがでしょうか。
お役に立てば幸いです。

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力さ...続きを読む

Qオペアンプのボルテージフォロアの帰還抵抗

オペアンプでボルテージフォロアを組む場合、教科書ではVoutと-入力を短絡すればいいと書いてあるのですが、あるアンプの回路をみたら短絡ではなく10kオームになっていました。
先輩に聞いたら発振防止のために入れるらしいですが、なぜ10kオームなのかという理由はわかりませんでした。
抵抗を入れるのはどういう場合なのでしょうか。
抵抗を入れる場合は定数をどうやって決めるのでしょうか。
教えてください。

Aベストアンサー

短絡でなく10kオームとなっているのは、+入力から見た信号源インピーダンスと-入力から見た信号源インピーダンスの差を小さくし、出力のDCオフセットとDCドリフトを小さくするためでしょう(バイアス電流の影響)。

ただし、ここに10kオームを入れると、高い周波数でのフィードバック位相が-入力の容量の影響で遅れますので、発振しやすくなります。
この場合、10kオームとパラレルにコンデンサを入れることもあります(位相補償)。

Qオペアンプ/反転増幅器/頭打ち

オペアンプの反転増幅器における特性について質問します。

ある値で入力電圧をかけ、出力電圧をテスターやオシロスコープで波形を見ると、ある値で頭打ちになってしまいます。オペアンプには、規定の電源電圧において正常に動作する限界値(出力が飽和する電圧)があると耳にしましたが、どういうことでしょうか?

オペアンプについて熟知しておらず、曖昧な質問で申し訳ありません。
よろしくお願い致します。

Aベストアンサー

>オペアンプには、規定の電源電圧において正常に動作する限界値(出力が飽和する電圧)があると耳にしましたが、どういうことでしょうか?

まさに言われる通り、ある電圧で出力が飽和してしまうってことです。
まず、当然のことながら、オペアンプはかけられた電源電圧以上の電圧を出力することはできませんから、どんなに頑張っても、電源電圧でオペアンプの出力は飽和してしまいます。

実際には、一般的なオペアンプは、電源電圧まで出すことができず、それより低い電圧で出力が飽和してしまいます。
オペアンプを(特に増幅目的で)使うときには、出力が飽和してしまわないように、入力の大きさを考えて増幅率を設計する必要があります。

Q遮断周波数のゲインがなぜ-3dBとなるのか?

私が知っている遮断周波数の知識は・・・
遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
<遮断周波数の定義>
出力電力が入力電力の1/2となる周波数を指す。
電力は電圧の2乗に比例するので
Vout / Vin = 1 / √2
となるので
ゲインG=20log( 1 / √2 )=-3dB
となる。

ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
となるのでしょうか?
定義として見るにしてもなぜこう定義するのか
ご存じの方いらっしゃいましたら教えて下さい。

Aベストアンサー

>ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
>となるのでしょうか?
>定義として見るにしてもなぜこう定義するのか

端的に言えば、
"通過するエネルギー"<"遮断されるエネルギー"
"通過するエネルギー">"遮断されるエネルギー"
が、変わる境目だからです。

>遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
これは、少々誤解を招く表現です。
減衰自体は"遮断周波数"に至る前から始まります。(-3dBに至る前に、-2dBとか、-1dBになる周波数があります)

Qオペアンプ反転増幅回路で+入力に繋がれた抵抗は何?

独学でアナログ回路の勉強をしている素人です。

オペアンプの反転増幅回路の基本回路だと、+入力はGNDに落としていますよね。
しかしネットで検索すると、抵抗を介してGNDへ落とす回路を見かけました。
この抵抗の役割がわからず、困っています。

実際の回路の画像を添付しました。
添付画像の赤い矢印のところの抵抗のことですが、これはどのような役割をしているのでしょうか。
一段目のオペアンプのように抵抗を介さずGNDに落としてはいけないのでしょうか。

自分が購入したアナログ回路の設計入門書にも(入門だからか)載っていませんし、自分なりに調べましたが、この抵抗の役割だけどうしても分かりません。

どうかご教授お願い出来ませんでしょうか。
宜しくお願いします。

Aベストアンサー

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかっている項が誤差になります。R4 がない場合は、式(A)で R4 = 0 としたものになるので
Vout = -[ (R3/R1)*Vin1 + (R3/R2)*Vin2 + Ib*R3 ]
となって Ib*R3 が誤差になります。ところが、R4 を入れて、添付図の最後の式のようにR4の抵抗値を調整すると、Ibの項が 0 となって、オペアンプの入力端子に流れるバイアス電流による誤差をなくすことができます。

ご質問の回路では、R1 = 20kΩ、R2 = 20kΩ、R3 = 20kΩ なので、バイアス電流による誤差をなくすには、本来は R4 = 1/( 1/20e3 + 1/20e3 + 1/20e3 ) = 6.67e3 Ω= 6.67kΩ にすべきです。

オペアンプの入力端子に流れるバイアス電流による誤差は、バイアス電流 Ib が大きいほど大きくなるので、FET入力のオペアンプやCMOSオペアンプのように、Ib がpA未満と非常に小さい場合には、添付図の式(A)の Ib 自身が非常に小さいので、R4 を入れなくても(R4を短絡しても)誤差は小さくなります。R4 を入れて誤差を小さくしたほうがいいのは、一般的に、Ib が 100nA以上のオペアンプを使った場合になります。

LM358の場合は Ib が最大100nAと、無視できる境界線あたりですが、ご質問の回路は交流だけを加算するもの(出力コンデンサで直流がカットされている)なので、バイアス電流によってVoutに直流的な誤差電圧が少々乗っていても問題ありません(オペアンプにLM358を使うのならR4はなくてもいい)。

なお、添付図では、オペアンプの反転入力端子(-)に流れるバイアス電流も非反転入力端子(+)に流れるバイアス電流も同じ Ib としていますが、現実には、この電流にはわずかな違いがあります(その違いを入力オフセット電流といいます)。しかし、この違いは一般に小さいので無視できることが多いです。

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかってい...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング