一次不等式の計算を教えてください

0.01x + 0.03 ≧ 0.2x - 0.5

私の答えは  x ≦ 0.279
問題集の答えはx ≦ 2.79

計算する決まり事などがあるのでしょうか?

A 回答 (3件)

>どうして100倍なのでしょうか?



計算し易くするためだけど、どうしても100倍したくないなら・・・

0.01x + 0.03 ≧ 0.2x - 0.5
     0.53 ≧ 0.19x
0.53÷0.19 ≧ x
   2.789・・・ ≧ x

で  x≦約2.79

ただの計算違いだと思う。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

あなたの仰るとおり計算まちがいでした。求めていた答えです。

本当にありがとうございます

お礼日時:2010/02/19 12:41

0.01x + 0.03 ≧ 0.2x - 0.5



両辺を100倍する。
x + 3 ≧ 20x - 50

両辺からxを引く。
3 ≧ 19x - 50

両辺に50を足す。
53 ≧ 19x

両辺を19で割る。
53÷19 ≧ x

53÷19を計算する。
2.789473... ≧ x

小数点以下2桁目で四捨五入する。
2.79 ≧ x

両辺をひっくり返す。
x ≦ 2.79
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

100倍しなければならない決まりがあるのでしょうか?
どうして100倍なのでしょうか?

x ≦ 0.279では不正解ですか?

お礼日時:2010/02/19 12:21

両辺を100倍して


x+3≧20x-50

19x≦53

x≦2.789473684・・・
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

100倍しなければならない決まりがあるのでしょうか?
どうして100倍なのでしょうか?

お礼日時:2010/02/19 12:20

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q不等式

僕は数学の不等式系の問題や単元がものすごくキライで苦手です。
不等式が出てきたら一瞬にして集中力も切れ勉強する気がなくなります。
今、不等式の表す領域をチャートで勉強していたのですが全くわかりません。
それにやる気までなくなりました。
不等式の苦手意識を克服する方法はありませんか?
今高三理系で受験生です。

Aベストアンサー

苦手意識を作ってしまった事が諸悪の根源です。それを断ち切るには、最初に戻って一から勉強しなおすことです。数学Iで不等式を習いますから、教科書の問を順に解いていくことをお勧めします。不等式の扱いは他の分野に比べて特に難しいところはありません。復習して最初からやり直すことで何ら難しい分野ではないことが分かると思います。

 さて、不等式の表す領域ですが、これはがよくわからないのは不等式の難しさとは別のところにあると思います。特に不等式の表す領域におけるxとyの表す式の最大値最小値問題が難しいのは不等式が苦手なのとは別の次元にあります。

 数学の解答を読んで分からないのは、その解答が何をしているか気づかないからです。では、なぜ気付かないのかというと経験が少ないからです。チャートを勉強しているときに、解答を読んで分からなければ、むしろ自力で解いてみるといいです。人の解答を読むより、自分で解くほうがむしろ簡単です。(解答が読めない人の場合)指針など、解法の要点を理解したらあとは自分で解いてみたらどうでしょうか。

このアドバイスが参考になれば幸いです。

QX-Y平面の領域D={(x,y)|0≦x≦1,x-1≦y≦x+1}を、

X-Y平面の領域D={(x,y)|0≦x≦1,x-1≦y≦x+1}を、x/y=u,y=vとして、U-V平面での領域で表したいのですが、どうにもできません。誰か教えてください。

Aベストアンサー

定義域をどう変換したら良いかわからないという意味の質問と捉えるならば、(<、>の下の等号は省略)
0<x<1 より両辺を足したり引いたりすれば、
1<x+1<2
-1<x-1<0
よってx-1<y<x+1 は -1<y<2 となり、 -1<v<2
また、x/y=uより0<x<1は0<uy<1
これから両辺に(題意としてy=v=0は定義されないので)1/yを掛ければ
0<u<1/y=1/v となりvの定義域から1/vの定義域の上限は無限大なので
0<uのみとなる。
結果、-1<v<2、0<uが領域の変換後の回答です。


 

Q数1 不等式

不等式がちっともわからないのでアドバイスお願いします。

※2乗は~で表させていただきます

xの不等式 x~2-2x≦0ー(1) 
     x~2-ax-2a~2ー(2)  (aは定数)

1、不等式(1)を解いて下さい

これは 0≦X≦2でいいと思うんですが。


2、0<a<1のとき、不等式(2)を求めてください、また不等式(1)、(2)を同時に満たすxの値の範囲を求めてください

全然解らないです((汗

3、不等式(1)、(2)を同時に満たすxの整数値がちょうど2個存在するときaのとりうる値の範囲を求めてください

よろしくお願いします。

Aベストアンサー

skyline-gtr-32さん、こんにちは。

>xの不等式 x~2-2x≦0ー(1) 
1、不等式(1)を解いて下さい
これは 0≦X≦2でいいと思うんですが。

そうですね。skyline-gtr-32さんの答えどおりでいいです。

x^2-2x=x(x-2)≦0なので
0≦x≦2という答えの範囲になります。

>2、0<a<1のとき、不等式(2)を求めてください、また不等式(1)、(2)を同時に満たすxの値の範囲を求めてください

まず、(2)の不等式を因数分解します。

x^2-ax-2a^2=(x+a)(x-2a)<0・・・(☆)
なんですよね。
さて、
(x-p)(x-q)<0という不等式の答えの範囲は、
p<qという条件つきならば、p<x<q
が答えになりましたよね?

(☆)を見てみると、-aと2aの大小比較をして、
(小さいほう)<x<(大きいほう)
というのが答えになるのが分かると思います。

-aと2aはどちらが大きいのでしょうか?
2a<-aとすると、3a<0となるので、a<0となって0<a<1に矛盾します。
-a<2aとすると、0<3aとなって、これは0<a<1にあてはまりますから
-aのほうが2aより小さいです。
したがって、答えは

-a<x<2aとなります。

さらに、(1)(2)を同時に満たす、ということは

0≦x≦2
-a<x<2a・・・(★)
の2つを同時に満たしている、ということですね。
ここで、0<a<1ですから
(★)は-1<a<x<2a<2ということになりますから、0≦x≦2との共通部分は
0≦x<2a
ということになります。

>3、不等式(1)、(2)を同時に満たすxの整数値がちょうど2個存在するときaのとりうる値の範囲を求めてください

0≦x<2a
の中に、整数解が2個あるようにするには、
x=0,x=1が入ればいいので
1<2a
つまり(1/2)<a
0<a<1の条件と合わせれば、1/2 <a<1
ということになると思います。

skyline-gtr-32さん、こんにちは。

>xの不等式 x~2-2x≦0ー(1) 
1、不等式(1)を解いて下さい
これは 0≦X≦2でいいと思うんですが。

そうですね。skyline-gtr-32さんの答えどおりでいいです。

x^2-2x=x(x-2)≦0なので
0≦x≦2という答えの範囲になります。

>2、0<a<1のとき、不等式(2)を求めてください、また不等式(1)、(2)を同時に満たすxの値の範囲を求めてください

まず、(2)の不等式を因数分解します。

x^2-ax-2a^2=(x+a)(x-2a)<0・・・(☆)
なんですよね。
さて、
(x-p)(x...続きを読む

Qy=sin(x)(0≦x≦2π)とx軸とで囲む面積。計算途中と答え教え

y=sin(x)(0≦x≦2π)とx軸とで囲む面積。計算途中と答え教えてください。お願いします。

Aベストアンサー

A#4に参考URLを貼るのを忘れました。

http://www.ee.chubu.ac.jp/jugyo/math/math-sindt.pdf

参考URL:http://www.ee.chubu.ac.jp/jugyo/math/math-sindt.pdf

Q不等式の問題

息子と共に不等式を勉強しています。問題レベルはx-3 ≤ 4 程度です。
今息子の頭は初めての不等式でこんがらがってます。そこで回答付きの問題をネットにて探しています。
一次不等式の問題、何かいいサイトありますか?
宜しくお願いいたします。

Aベストアンサー

あ~難しいですよね・・・

これなんかどうでしょう?

参考URL:http://www7a.biglobe.ne.jp/~mkun/Mathematics/renhutou.htm#1

Qx,yは実数x^2+y^2=36,y≧0を満たす時、(□-□√□)/5≦(y-3)/(x-9)≦□を埋めよ

こんばんわ。宜しくお願い致します。

[問]
x,yは実数x^2+y^2=36,y≧0を満たす時、
(□-□√□)/5≦(y-3)/(x-9)≦□
を埋めよ。

という問題で困ってます。
(y-3)/(x-9)=k
とおいてから
y=kx-9k+3
から先に進めません。
何か良い方法がありましたらお教え下さい。

Aベストアンサー

x^2+y^2=36,y≧0 は、原点中心の半径6の円の上半分
(y-3)/(x-9)=k
とおくと
(y-3)=k(x-9) は、(9,3)を通る直線
この直線が半円と共有点を持つときの傾きkの範囲を求めるということ。
最大値はすぐわかりそう。
「最小値は直線と原点の距離が6」という条件でやったらいいと思います。

Q二次不等式の問題です急いでます

二次不等式x二乗-(a+1)x+aについて次の問いに答えよ。
(1)a≠1のとき不等式を解け
(2)不等式を満たす整数xがただ1つだけとなるときのaの値の範囲を求めよ。

両方お願いします(._.)

Aベストアンサー

> 二次不等式x二乗-(a+1)x+aについて
不等式となってません。

x^2-(a+1)x+a<0
でしょうか?

そうであるとして回答します。

(1)a≠1
x^2-(a+1)x+a<0
(x-a)(x-1)<0

a>1のときの解 1<x<a
a<1のときの解 a<x<1

(2)
a=1とすれば不等式は
 (x-1)^2<0
これを満たす整数xは存在しないから a≠1

(1)の結果より
整数xがただ1つだけとなるときは

a>1のときの解 1<x<a → 2<a≦3
a<1のときの解 a<x<1 → -1≦a<0

まとめると
 2<a≦3 または -1≦a<0

もし不等式が
x^2-(a+1)x+a≦0
であれば

(1)a≠1
x^2-(a+1)x+a≦0
(x-a)(x-1)≦0

a>1のときの解 1≦x≦a
a<1のときの解 a≦x≦1

(2)
整数xがただ1つだけとなるときは
a=1のとき
 (x-1)^2≦0
これを満たす整数xは x=1 条件をみたす。

a≠1のとき
(1)の結果より

a>1のときの解 1≦x≦a → 1<a<2
a<1のときの解 a≦x≦1 → 0<a<1

まとめると
 0<a<2

> 二次不等式x二乗-(a+1)x+aについて
不等式となってません。

x^2-(a+1)x+a<0
でしょうか?

そうであるとして回答します。

(1)a≠1
x^2-(a+1)x+a<0
(x-a)(x-1)<0

a>1のときの解 1<x<a
a<1のときの解 a<x<1

(2)
a=1とすれば不等式は
 (x-1)^2<0
これを満たす整数xは存在しないから a≠1

(1)の結果より
整数xがただ1つだけとなるときは

a>1のときの解 1<x<a → 2<a≦3
a<1のときの解 a<x<1 → -1≦a<0

まとめると
 2<a≦3 または -1≦a<0

もし不等式が
x^2-(a+1)x+a≦0
であれば

(1)a≠1
x^2-(a+1)x+a≦0
(x...続きを読む

Qこの問題の答えは、0≦x≦120ですか?それとも、x≦120ですか?

この問題の答えは、0≦x≦120ですか?それとも、x≦120ですか?

Aベストアンサー

数学の問題というよりも、「国語」「日本語」の問題ですね。

「深さの『以下』」はどのように解釈すべきか、という問題です。

一般には、「台風で側溝の水の深さは50cm以上あった」という場合には、「深さが50cmよりも大きい」と解釈するのが普通です。
ということは、その逆の「深さは120cm以下」は、「120cmよりも浅い」と解釈すべきなのでしょう。

でも、「以下」は、いかにも(これダジャレではないです)「下に向かっている」という印象なので、「下に行けば深くなる」という感覚で「深さは120cm以下」を「120cmよりも深い」と直感的に考えるのでしょうね。
「水深100m以下は暗黒の世界である」はこの使い方で、「深さ」が「以下」なのではなく、「深さ100mの地点以下(深さ100mの地点よりも下)」という意味で使っているのでしょう。

問題の文でいえば、
(A)「プールの水の深さは120cm以下である」 これは水深≦120cm。
(B)「プールの底の深さは120cm以下である」 これは水深≧120cmと解釈するのが普通かな。
(C)「プールの深さは120cm以下である」   これは微妙ですが、通常は(A)と同じと考えるのでしょうね。

数学の問題というよりも、「国語」「日本語」の問題ですね。

「深さの『以下』」はどのように解釈すべきか、という問題です。

一般には、「台風で側溝の水の深さは50cm以上あった」という場合には、「深さが50cmよりも大きい」と解釈するのが普通です。
ということは、その逆の「深さは120cm以下」は、「120cmよりも浅い」と解釈すべきなのでしょう。

でも、「以下」は、いかにも(これダジャレではないです)「下に向かっている」という印象なので、「下に行けば深くなる」という感覚で「深さは120cm以下」を...続きを読む

Q三角不等式の問題

三角不等式の問題
 0°<=θ<=180°のとき、つぎの不等式を解け。
  1)sinθ<=1/2
  2)2cosθ-√3<0
  3)tanθ+1>=0

 考え方が分かりません;;丁寧にご解説下さると嬉しいです。
 
 不等式を解いて(2)cosθ<√3/2、(3)tanθ>=-1になることまでは分かりましたが…

Aベストアンサー

>考え方が分かりません;;丁寧にご解説下さると嬉しいです。

参考URLを見れば考え方が分かるはずです。ここをじっくり見て
単位円を使った三角不等式を解き方を勉強してみて下さい。
そうすれば解けるようになるかと思います。

その結果、分からない箇所があれば、補足にやったことを書いてどこが分からないかきいてください。

http://www.kwansei.ac.jp/hs/z90010/sugaku1/sankaku/sanhotei/sanhotei.htm

参考URL:http://www.kwansei.ac.jp/hs/z90010/sugaku1/sankaku/sanhotei/sanhotei.htm

QD={(x,y)|0≦x≦1,x≦y≦1}

D={(x,y)|0≦x≦1,x≦y≦1}
∬[D](e^y)^2dxdy
初歩的な問題なんですがこれ答えは(e/2)-(1/2)であってますか?どなたか頼みます。

Aベストアンサー

>積分範囲がxは0からy、yは0からyにになるのがわからないです。0≦x≦1,x≦y≦1がなんでその積分範囲になるのでしょうか?

重積分する場合は、積分領域をxy座標平面にプロットして確認します。
その積分領域全体をカバーするように積分変数を1つずつ順に変化させていくことで、各変数の積分範囲が決まります。それが逐次積分法です。

今の問題の場合

∫[0,1]{∫[x,1] f(x,y)dy}dx

∫[0,1]{∫[0,y] f(x,y)dx}dy

どちらの順序で逐次積分しても、積分領域全体をカバーできます。
必ず積分領域をプロットして、積分をどの順序で行っているか確認
してください(そうすれば重積分が怖くなくなりますよ)。

なので、どちらでも積分でき同じ積分値が得られます。
しかし、積分のしやすさ(難易度)に差が出ますので、簡単に積分できる方を選んでやります。
したがって、どちらの逐次積分の順序もマスターしておき、より簡単に積分できる方を選ぶことがポイントになります。


人気Q&Aランキング

おすすめ情報