
No.5ベストアンサー
- 回答日時:
2次元の空間の位置は、座標と言う形で表せます。
例えば、(X,Y)=(3、4)というようにです。
紙に水平な直線と垂直な直線をひいて見てください。
水平な方をX軸といい、右にいくほど大きく(+)になります。
垂直な方をY軸といい、上にいくほど大きく(+)になります。
ちなみに軸同士が交わっている点を原点(X,Y)=(0,0)といいます。
例えの(3,4)というのは、原点から見て、右方向に3つ、上に4つの位置にある点を言います。
さて、ここから本題です。
この座標の読み方を知ってもらった上で、説明します。
直線というのは、無数の点(座標)の集まりなんです。
Y=Xという式で表す式は、(X、Y)=(0、0)、(X、Y)=(1、1)、
(X、Y)=(2、2)・・・のように無数の座標のつながりなわけです。
では、X=-3というのは、どういうことなのか?
それは、常にXの座標が-3の点の集まりなんです。
(X,Y)=(-3、0)、(X,Y)=(-3、1)、(X,Y)=(-3、2)・・・のように。
これは、Y軸(X=0)に平行で、X方向に-3の位置にある線のことです。
次に、放物線ですが、グラフ上では、アルファベットのUのような形をしています。
問題のy=x2-ax-7の場合。
X=-3で対象というのは、U型が、X==-3で、左右対称になることを
示しています。
これは、頂点(U型の1番底の部分)のXの座標が、-3だと言う事です。
また、質問の公式は、2次式の一般的なもので
y=(ax2)+(bx)+cというものを変形するところから来ています。
この式を変形するとy=a(x2+(b/a)x)+C
=a(x+(b/2a))2+C-(b/2a)2
となります。
放物線の頂点というのは、このように変形した式から読み取れるのです。
この場合、X=-(b/2a)、Y=C-(b/2a)2です。
これの理由は、説明すると長いので、また質問してください。
とりあえず、これが、そのまま公式になっているようです。
問題では、頂点が-3だということが読み取れますので、
公式に当てはめると・・・
X=-(b/2a)より、-3=-((-a)/2)で、a=-6!?
-12じゃなくて、-6じゃないですか?
だって、頂点は1つでしょ?
となると、-12だと
y=x2+12x-7のとき、X=-3だとY=38
これを元に、38=x2+12x-7を変形すると・・・
x2+12x-45=0になって、
これは、(X+15)(X-3)=0になって、
Xの値が2つ出てきてしまうのですが・・・?
おれ、間違ってるのかな?
お礼が遅くなって申し訳ありませんでした。
とっても分かりやすい説明で、この問題を突破する事が出来ました。
また、これをクリアできたおかげでなんとか他の問題も解いていく事ができています。
a=-6のことなんですが、すみません・・・放物線の式を間違えて書いていた様です。本当はy=2x^2-ax-7でした;お手数をおかけしました。
これからも質問する事があると思いますがよろしくお願いします。
No.4
- 回答日時:
下に回答がありますが…
1)x=-3
yの値に関係なく、xは常に-3という値である ということから、x軸で-3を横切り(これをx切片といいますが)、y軸に平行な直線ということになります。
2)一般的に y-b=(x-a)^2 (1) というグラフは、
y=x^2 (2)というグラフをx軸方向に+a、y軸方向に+b平行移動したグラフになります。
実際
x= -2a -a 0 a 2a
(1)= 9a^2 4a^2 a^2 0 a^2
(2)= 4a^2 a^2 0 a^2 4a^2
と、変化します。
直線x=-3に対称になる放物線は、
y-b=(x+3)^2
という方程式になります。
これを展開して y=x^2+6x+9-b
これが、y=x^2-ax-7 と 恒等式(要するに同じということ)になるので、 -a=+6 したがって、a=-6 となるはずです。
書いた2)の解が-12となっているのはよくわかりません。
ご確認いただけましたら幸いに思います。
なお、^2は二乗を意味しています。念のため
お礼が遅まして申し訳ありません。
回答有り難うございました。a=-6のことなんですが、すみません・・・放物線の式を間違えて書いていた様です。本当はy=2x^2-ax-7でした;
お手数をおかけしました。
No.3
- 回答日時:
数学屋さんではないのですが、一応理系ということで。
わかりにくい部分があったらすみません。>1)x=-3が、直線と書いてある意味が分らない。
たとえばy=xを「直線y=x」と呼ぶことはよろしいでしょうか。x-y座標平面上に原点を通る直線が描かれますよね。
ここで、x=-3を考えます。これは、実は「x=-3、yは任意の実数」ということです。これを満たす(x,y)の組を座標平面に書くと、x軸とx=-3で直交する直線が書かれます。そのため、「直線x=-3」と呼ぶわけです。
>2)解答はー・ーa/2×2=ー3でa=ー12となっていたのですが、
なぜー・b/2aの公式を使うのか分りません。
確かにこれだけでは飛躍しすぎですね。丁寧に考えていきましょう。
始めに、座標平面上での放物線の形を考えてみます。
問のy=x^2-ax-7 ,,,(1)
の場合、y=(xの二次関数)ですからちょうど釣り鐘を逆さにしたような形が予想できます。さらに、この図形は吊りがねのちょうど中央部に、x軸に垂直な「軸」を考えるとこの軸に関して対称です。
このことから、この問はこの対称「軸」がx=-3に一致するように定数aを定めればいいことになります。
x=-3を軸とする放物線の式を書く(x^2成分は1とする)と、
y=(x-3)^2 + c cは定数 ...(2)
となります。なお、これはx=0(y軸)を対称軸とする放物線y=x^2をx方向に-3、y方向にc移動したものと考えます。x=0をx方向に-3移動すればx=-3になることは大丈夫ですね?(cは問には関係しないので無視。)
ここまでくればできたも同然です。式(1)と(2)は同じ式(恒等式)です。よって(2)を展開し、xの一次の係数を比較すると、
a = -6 ...あれ?a=-12じゃないですよ。
質問の文章から推定しますと、放物線の式がy=2 x^2- ax -7 (x^2の係数が1でなく2!)だったのではないでしょうか?この場合、同様に考えて、
y=2(x-3)^2+c のx一次の係数を比較するとa=-12となります。
-b/2aの公式とは、2次方程式の解の公式のことでしょうか?解の公式の導出過程を考えると、実は類似の計算をしていることが分かります。
>また、この問題は基礎でしょうか??
放物線の性質に関する学習上重要なポイントを押さえた問題と言えます。かといって難易度が低いという訳ではありません。
数学をやりなおしているとのこと、がんばってくださいね。
この回答への補足
a=-6のことなんですが、すみません・・・放物線の式を間違えて書いていた様です。本当はy=2x^2-ax-7でした;なので、初めに書いた放物線の式でいくとa=-6になりますね。お手数をおかけしましたm(__)m
(下記にも同様の事を書いてますが、また間違って書いた部分があります。すんません。)
お礼が遅くなって申し訳ありませんでした。
詳しい説明有り難うございました。やっと分りました。
a=-6のことなんですが、すみません・・・放物線の式を間違えて書いていた様です。本当はy=2x^2-ax-7でした;なので、初めに書いた放物線の式でいくとa=-12になりますね。お手数をおかけしましたm(__)m
応援メッセージ、本当にうれしかったです!!これからも質問をするとおもいますが、どうぞよろしくお願いします。
No.2
- 回答日時:
1)直線x=-3とはグラフ上でxの値が-3であり
yの値は任意(いくつでもいい)の点を線で結んだものです。
2)解の公式でしたっけ、それの前部分ですね。
解の公式は-b±ルート(4ac)/2aですよね。
ここで解の公式の答えは-b/2aという点から
左右に等距離の点にあることがわかりますか?
たとえば 3±2であれば、3を中心に2はなれた点が解となりますよね。
もうわかりましたか?3を中心に、つまり
解の公式の部分がその二次関数の中心となるわけなんです。
グラフをかいてみればわかると思うので書いてみてはいかがでしょうか
わかっていただければ光栄です。
基礎がわかっていれば解ける問題といったところではないでしょうか。
がんばってください。
お礼が遅れてしまい、申し訳ありません。
早速、グラフを書きました。やはり分らない時はグラフを書いてみないといけませんね。ありがとうございました!!
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
2次関数
-
【至急】困ってます! 【1】1、...
-
数学の変数にはなぜ「x」が使わ...
-
放物線y=x^2+a と円x^2+y^2=9に...
-
【 数I 2次関数 】 問題 放物線...
-
楕円の焦点,中心を作図で求め...
-
放物線の対称移動の問題の答え...
-
高校数学 放物線がx軸から切り...
-
数3 放物線 y^2=4pxという式を...
-
噴水はなぜ放物線をえがくので...
-
tの値が変化するとき、放物線y=...
-
数学の問題で困ってます。媒介...
-
遠近法であらわされた円は楕円...
-
放物線y=x^2+aと円x^2+y^2=9が...
-
数学の問題です。 実数x、yが、...
-
グラフの平行移動の問題で y=2x...
-
放物線y=x^2-3xと y=0,y=4 で囲...
-
数学における「一般に」とは何...
-
2:1正楕円とは何ですか?
-
数学III 放物線の問題です 問題...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
tの値が変化するとき、放物線y=...
-
【至急】困ってます! 【1】1、...
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
数学における「一般に」とは何...
-
軌跡の「逆に」の必要性につい...
-
y=ax^2+bx+cのbは何を表してい...
-
【 数I 2次関数 】 問題 放物線...
-
数学の問題です。 実数x、yが、...
-
双曲線の焦点を求める時はなぜ√...
-
円柱をある角度で切断時の楕円...
-
至急!y=2X^2を変形(平方完成)...
-
数学の問題です
-
日常生活で放物線や双曲線の例...
-
放物線y=2x² を平行移動した曲...
-
添付画像の放物線はどんな式で...
-
放物線y=x^2+a と円x^2+y^2=9に...
-
楕円の書き方
-
軌跡について
-
放物線y=x^2+aと円x^2+y^2=9が...
おすすめ情報